Деформация металлов
Рефераты >> Физика >> Деформация металлов

Типичные значения величин, характеризующих прочность на растяжение ряда металлов и сплавов, представлены в табл. 2. Нетрудно видеть, что эти значения для одного и того же материала могут сильно различаться в зависимости от обработки.

Таблица 2

Металлы и сплавы

Состояние

Предел текучести, МПа

Предел прочности на растяжение, МПа

Удлинение, %

Малоуглеродистая сталь (0,2% С)

Горячекатанная

300

450

35

Среднеуглеродистая сталь (0,4% С, 0,5%Mn)

Упрочненная и отпущенная

450

700

21

Высокопрочная сталь (0,4% С, 1,0% Mn, 1,5% Si, 2,0% Cr, 0,5% Мo)

Упрочненная и отпущенная

1750

2300

11

Серый чугун

После литья

175–300

0,4

Алюминий технически чистый

Отожженный

35

90

45

Алюминий технически чистый

Деформационно-упрочненный

150

170

15

Алюминиевый сплав (4,5% Cu, 1,5% Mg, 0,6% Mn)

Упрочненный старением

360

500

13

Латунь листовая (70% Cu, 30% Zn)

Полностью отожженная

80

300

66

Латунь листовая (70% Cu, 30% Zn)

Деформационно-упрочненная

500

530

8

Вольфрам, проволока

Тянутая до диаметра 0,63 мм

2200

2300

2,5

Свинец

После литья

0,006

12

30

Сжатие. Упругие и пластические свойства при сжатии обычно весьма сходны с тем, что наблюдается при растяжении (рис. 2). Кривая соотношения между условным напряжением и условной деформацией при сжатии проходит выше соответствующей кривой для растяжения только потому, что при сжатии поперечное сечение образца не уменьшается, а увеличивается. Если же по осям графика откладывать истинное напряжение и истинную деформацию, то кривые практически совпадают, хотя при растяжении разрушение происходит раньше.

Рис. 2. ДИАГРАММЫ РАСТЯЖЕНИЯ И СЖАТИЯ. Кривая условного напряжения для сжатия проходит выше, чем для растяжения, только потому, что при сжатии поперечное сечение увеличивается, а не уменьшается.

Твердость. Твердость материала – это его способность сопротивляться пластической деформации. Поскольку испытания на растяжение требуют дорогостоящего оборудования и больших затрат времени, часто прибегают к более простым испытаниям на твердость. При испытаниях по методам Бринелля и Роквелла в поверхность металла при заданных нагрузке и скорости нагружения вдавливают «индентор» (наконечник, имеющий форму шара или пирамиды). Затем измеряют (часто это делается автоматически) размер отпечатка, и по нему определяют показатель (число) твердости. Чем меньше отпечаток, тем больше твердость. Твердость и предел текучести – это в какой-то мере сравнимые характеристики: обычно при увеличении одной из них увеличивается и другая.

Может сложиться впечатление, что в металлических материалах всегда желательны максимальные предел текучести и твердость. На самом деле это не так, и не только по экономическим соображениям (процессы упрочнения требуют дополнительных затрат).

Во-первых, материалам необходимо придавать форму различных изделий, а это обычно осуществляется с применением процессов (прокатки, штамповки, прессования), в которых важную роль играет пластическая деформация. Даже при обработке на металлорежущем станке очень существенна пластическая деформация. Если твердость материала слишком велика, то для придания ему нужной формы требуются слишком большие силы, вследствие чего режущие инструменты быстро изнашиваются. Такого рода трудности можно уменьшить, обрабатывая металлы при повышенной температуре, когда они становятся мягче. Если же горячая обработка невозможна, то используется отжиг металла (медленный нагрев и охлаждение).

Во-вторых, по мере того как металлический материал становится тверже, он обычно теряет пластичность. Иначе говоря, материал становится хрупким, если его предел текучести столь велик, что пластическая деформация не происходит вплоть до тех напряжений, которые сразу же вызывают разрушение. Конструктору обычно приходится выбирать какие-то промежуточные уровни твердости и пластичности.

Ударная вязкость и хрупкость. Вязкость противоположна хрупкости. Это способность материала сопротивляться разрушению, поглощая энергию удара. Например, стекло хрупкое, потому что оно не способно поглощать энергию за счет пластической деформации. При столь же резком ударе по листу мягкого алюминия не возникают большие напряжения, так как алюминий способен к пластической деформации, поглощающей энергию удара.


Страница: