Движение тел переменной массы. Основы теоретической космонавтики
Когда массивная первая ступень многоступенчатой ракеты исчерпывает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает другая, менее массивная ступень, и к ранее достигнутой скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости, и т.д.
Согласно формуле Циолковского, первая ступень в конце разгона достигнет скорости , где . Вторая ступень увеличит скорость ещё на , где . Полная характеристическая скорость двухступенчатой ракеты будет равна сумме скоростей, сообщаемых каждой ступенью в отдельности:
. Если скорости истечения из ступеней одинаковы, то , где Z= - число Циолковского для двухступенчатой ракеты.
Нетрудно доказать, что в случае 3-x ступенчатой ракеты число Циолковского будет равно Z=.
Итак, предыдущая задача достичь скорости 20км/с легко решается с помощью 3-х ступенчатой ракеты. Для неё число Циолковского будет также равно 54,6, однако, числа Циолковского для каждой ступени (при условии их равенства между собой) будут равны 3.79, что является вполне достижимым для современной техники.
Список используемой литературы:
- Основы космонавтики / А. Д. Марленский
- Люди русской науки: Очерки о выдающихся деятелях естествознания и техники / под редакцией С. И. Вавилова.