Моделирование экологических проблем и способов их решений на уроках химии
Рефераты >> Педагогика >> Моделирование экологических проблем и способов их решений на уроках химии

В последние годы очень часто можно слышать выражение «кислотные осадки». Они представляют собой различные виды атмосферных осадков, таких, как дождь, снег, туман или роса, с рН ниже нормы (рН < 5,6).

Впервые проблема кислотных осадков стала предметом обсуждения на ХXVIII Генеральной ассамблее Международного союза по теоретической и прикладной химии (ИЮПАК), проходившей в Мадриде в сентябре 1975 г.

По словам канадского министра окружающей среды Дж.Робертса, «кислотный дождь – одна из наиболее тяжелых форм загрязнения окружающей среды, которую только можно себе представить, опасная болезнь биосферы».

Максимальный отрицательный эффект кислотные дожди и газовые выбросы наносят воздушной среде, а через нее – флоре и фауне. Однако велик и уровень загрязнения водной среды [1].

В связи со сложившейся экологической ситуацией учащиеся должны иметь грамотные представления о проблеме кислотных осадков. Одним из средств формирования этих представлений являются наглядные пособия в виде схем, использовать которые можно на занятиях по химии в средней школе в разных классах. Однако, на наш взгляд, рациональнее работать с ними в старшей школе.

Основным наглядным пособием при изучении данного материала становится динамическая схема 1 «Влияние кислотных осадков на окружающую среду», которая состоит из двух частей – статической и динамической.

Статическая часть, выполненная на большом листе ватмана, представляет изображения основных антропогенных источников кислотообразующих выбросов: теплоэлектростанция (ТЭС), металлургический завод и автомобиль.

Основные поставщики диоксида серы в атмосферу – машиностроительные, металлургические заводы (переработка руды, содержащей серу, различные химические технологические процессы – 50% SO2), теплоэлектростанции (сжигание богатого серой угля, мазута – 40% SO2) [2].

Кислотные оксиды азота техногенного происхождения (NО, NO2) образуются из азота воздуха при сгорании топлива, если температура превышает 1000 °С.

В России около 25% техногенных выбросов оксидов азота происходит при сжигании топлива на предприятиях тепло- и электроэнергетики, столько же – при различных производственных процессах на предприятиях металлургической, машиностроительной, химической отраслей промышленности (например, получение азотной кислоты и взрывчатых веществ). Главный источник поступления оксидов азота в атмосферу (до 40%) – автотранспорт [см. 2].

Приведенные данные об антропогенных выбросах кислотных оксидов в атмосферу объясняют, почему в статической части схемы 1 приведены изображения именно этих объектов. Возможным дополнением к ним могут быть числовые значения антропогенного поступления кислотных оксидов в атмосферу.

Схема 1

Влияние кислотных осадков на окружающую среду

Статическая часть

Динамическая часть

Кроме антропогенных источников кислотообразующих выбросов в статической части схемы 1 изображены различные природные среды обитания живых организмов: гидросфера, атмосфера и литосфера. Гидросферу можно представить в виде пруда или озера, в которых обитают различные живые организмы. Литосфера изображена в виде почвы и наземной растительности.

Все изменения в окружающей среде при действии кислотных оксидов представлены в динамической части схемы 1.

Элементы динамической части схемы изображают на плотной бумаге и прикрепляют к статической части схемы 1 с помощью булавок по мере объяснения материала.

До начала объяснения воздействия кислотных осадков на различные среды обитания организмов на статической части схемы 1 прикрепляют следующие условные изображения: фито- и зоопланктон, моллюск, водоросли и значение

рН = 7,5 – возле водоема; бактерии-сапрофиты – в почве, слева от изображения водоема; азотфиксирующие бактерии – около корней клевера; здоровое хвойное дерево – справа от автомобиля.

Объяснение материала необходимо начать с рассмотрения антропогенных источников кислотообразующих выбросов, прикрепляя к башням ТЭС и трубам металлургического завода аппликации с изображением дымовых выбросов SO2 и NO2, а к выхлопной трубе автомобиля – изображение NOx, показывающее дымовое выделение оксидов азота (NО2 и NО).

После попадания оксидов серы и азота в атмосферу необходимо рассмотреть процессы, приводящие к образованию кислотных осадков.

Диоксид серы, попавший в атмосферу, претерпевает ряд химических превращений, ведущих к образованию кислот. Частично диоксид серы в результате фотохимического окисления превращается в оксид серы(VI) (серный ангидрид) SО3:

который реагирует с водяным паром атмосферы, образуя аэрозоли серной кислоты:

Основная часть выбрасываемого диоксида серы во влажном воздухе образует кислотный полигидрат SO2•nH2O, который часто называют сернистой кислотой Н2SO3:

Сернистая кислота во влажном воздухе постепенно окисляется до серной:

Аэрозоли серной и сернистой кислот конденсируются в водяном паре атмосферы и становятся причиной кислотных осадков. Они составляют около 2/3 кислотных осадков. Остальное приходится на долю аэрозолей азотной и азотистой кислот, образующихся при взаимодействии диоксида азота с водяным паром атмосферы:

Методика проведения данной части урока может быть различной: объяснение и составление уравнений учителем, дописывание правых или левых частей уравнений учащимися или самостоятельное написание уравнений превращений кислотных оксидов в атмосфере.

Работа со схемой 1 выражается сначала появлением (на статической ее части) облака с уравнениями реакций, а затем – облака с формулой иона водорода. В схему вносят и различные виды осадков: дождевые капли или снежинки, на которых написан ион водорода (Н+). Это показывает, что в атмосфере произошли химические превращения, которые привели к выпадению кислотных осадков.

Далее логично рассмотреть изменения в окружающей среде, которые происходят под действием кислотных осадков. Начать это объяснение можно с любой среды обитания.

Средним значением показателя кислотности большинства почвенных вод, питающих реки и грунтовые воды, является рН около 8 [3]. Например, концентрация водородных ионов в озере Байкал соответствует пределам 7,0–8,5. В летнее время щелочность байкальской воды несколько увеличивается и рН возрастает до 8,0–8,5. Зимой рН близок к 7,0. С глубиной рН снижается, вода приобретает слабокислый характер [4].

Для создания более конкретных представлений о влиянии рН водоемов на жизнедеятельность гидробионтов (обитатели пресноводных водоемов) может быть использована схема 2 «Реакция гидробионтов на понижение значений рН в пресноводных водоемах» [5]. На этой схеме изображены различные обитатели водоемов: ракообразные, улитки, разнообразные виды рыб (лосось, форель, окунь, щука, угорь и др.), водные насекомые, фито- и зоопланктон – и их реакция на изменения рН воды в диапазоне от 7,5 до 3,5.


Страница: