Методика изучения функций в школьном курсе математики
Рефераты >> Педагогика >> Методика изучения функций в школьном курсе математики

Пример:

a) Даны многочлены и .Вычислить сумму этих многочленов при x=0,5

b) Рациональное выражение можно представить в виде

.

Пользуясь таким представлением, найти разность функций

и

в точках .

c) Вычислить значение функции при , пользуясь таблицами Брадиса (или компьютером).

Наводящий вопрос : каким из двух способов вычисления значений данного выражения проще провести выкладки?

Целесообразно при изучении графиков функций рассмотреть графическую иллюстрацию функций вида

, ,

используя построения по точкам и учитывая простейшие особенности тех функций, которые составляют формулу данной функции.

Изучение операций второй группы вводятся посредством явного определения. Каждая из этих операций используется в изучении теоретического материала: композиция функций – сложная функция.

Понятие обратной функции, можно отнести к числу важнейших общих понятий в составе функциональной линии. При изучении выясняется зависимость её монотонности от монотонности её исходной функции.

Понятие непрерывности используется при построении графиков и способствует формированию понятия. Понятие непрерывности используется при изучении квадратного корня, при определении показательной функции, при рассмотрении графического метода решение уравнений и неравенств.

При изучении функций в X-XI классах большее предпочтение отдаётся аналитическому исследованию, и схема изучения функции выглядит следующим образом:

1) Рассмотреть подводящую задачу;

2) Сформулировать определение функции;

3) Провести аналитическое исследование свойств функции;

4) Построить (на основе данных аналитического исследования) график функции; в целях более точного его построения составить таблицу " характерных" значений функции и построить соответствующие графики;

5) Рассмотреть задачи и упражнения на применение изученных свойств функции.

Замечание: Знакомя учащихся со свойствами функции, следует помнить, что не все из них являются достаточно наглядными, поэтому не всегда график функции может подсказать их ученику. Например, посмотрите на рисунок

Графики каких функций здесь изображены?

Графики: и сумма функций .

Наиболее характерные случаи срабатывания "наглядности графиков":

1. корни уравнения

2. решение

3. –график выше

4. возрастающая функция;

5. чётность функции;

6. графики взаимообратных функций симметричны относительно прямой ;

7.

Заключение

Обучение функциональным представлениям следует строить на основе методического анализа понятия функции в поисках понятия алгебраической системы. Здесь функция – отношение специального вида между двумя множествами, удовлетворяющее условие функциональности. Начальный этап изучения – понятие отношения. Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств: формулы, таблицы, задание функции стрелками, перечислением пар, использованием не только числового, но и геометрического материала (теперь и геометрическое преобразование можно рассматривать как функцию). Однако наработанные таким образом общие понятия в дальнейшем связываются только с числовыми функциями одного числового аргумента, поэтому при таком подходе наблюдается определённая избыточность в формировании функции как обобщённого понятия

Литература

1. К.О. Ананченко "Общая методика преподавания математики в школе", Мн., "Унiверсiтэцкае",1997г.

2.Н.М.Рогановский "Методика преподавания в средней школе", Мн., "Высшая школа", 1990г.

3.Г.Фройденталь "Математика как педагогическая задача",М., "Просвещение", 1998г.

4.Н.Н. "Математическая лаборатория", М., "Просвещение", 1997г.

5.Ю.М.Колягин "Методика преподавания математики в средней школе", М., "Просвещение", 1999г.

6.А.А.Столяр "Логические проблемы преподавания математики", Мн., "Высшая школа", 2000г.


Страница: