Изучение вопросов биотехнологии в курсе химии средней школы
Рефераты >> Педагогика >> Изучение вопросов биотехнологии в курсе химии средней школы

Витамин В2 (рибофлавин) вплоть до 30-х годов 20 века выделяли из природного сырья (1г из 1т моркови и 6г из 1т печени трески). В 1935 году был обнаружен активный продуцент рибофлавина – гриб Eremothecium, способный давать с 1т питательной среды 25 кг витамина. Отбор мутантов ведут по устойчивости к аналогу витамина В2.

Витамина В12 из 1т печени трески можно было выделить лишь 15 мг. В настоящее время витамин В12 синтезируется только микробиологическим путем с использованием актиномицетов и одноклеточных водорослей.

β-каротин можно выделить из ряда растительных объектов: 1т моркови содержит 0,06 мг витамина, в то время как биомасса гриба Blaneslea накапливает β-каротин в количестве 8 мг/г.

III. Получение органических кислот

Объем мирового производства лимонной кислоты НООССН2С(ОН) (СООН) СН2СООН – 400 тыс. т/год. Данное производство относится к старейшим микробиологическим процессам: 1893 г. – год основания. Используют культуру гриба Aspergillus niger. Условиями высокого выхода лимонной кислоты является хорошая аэрация и дефицит фосфата в среде.

Одновременно с лимонной было налажено аналогичное производство молочной кислоты при участии молочнокислых бактерий Lactobacillus.

IV. Получение антибиотиков

Вспомните, что такое антибиотики? Думаю, важность получения соединений данной группы нет необходимости доказывать.

В 1940 году было известно всего 6 антибиотиков, а в настоящее время описано свыше 12 000 соединений, из которых в клинике используется около 200 (остальные токсичны).

Биосинтез антибиотиков осуществляется:

1) добавлением в питательную среду подходящего предшественника (фенилуксусная кислота стимулирует биосинтез бензилпенициллина);

2) использованием блокированных мутантов, у которых отсутствует определенное звено в цепи реакций, ведущих к синтезу антибиотика. Следовательно, можно получить аналоги антибиотиков и модифицировать их химически (бензилпенициллин, ампицилин).

4. Вывод

Пока человек лишь приближается к моделированию природных биохимических процессов, а пока изыскивает новые пути использования существующих.

УРОК №6 по теме «Применение ферментов»

Задачи:

1. Образовательная: знакомство с иммобилизованными ферментами. Промышленное применение иммобилизованных ферментов.

2. Развивающая: а) развитие познавательного интереса;

б) формирование логического мышления в ходе знакомства с методами иммобилизации ферментов;

в) формирование умений и навыков умственного и практического труда.

3. Воспитательная: а) в целях формирования диалектического мировоззрения показать использование катализаторов белковой природы;

б) воспитание мотивации к обучению при акцентировании на современности и важности данной методики работы с ферментными препаратами.

Ход урока:

1. Организация класса

Какими способами можно получить белковые аминокислоты? Попытайтесь написать реакцию гидролиза белка в общем виде.

2. Актуализация знаний

Всем хорошо известно, что в морской воде много растворенного кислорода, но, тем не менее, его использование затруднено, и при погружении приходится использовать дополнительные источники кислорода. А что, если гемоглобин, выделенный из крови, использовать в качестве посредника между морской водой и газовой средой дыхательного аппарата?! Более того, модель «гемогубки» уже предложена и, возможно, в ближайшем будущем будут сконструированы эффективные искусственные жабры. Сегодня на уроке мы попытаемся разобраться, каким образом можно «направить в нужное русло» тот или иной фермент.

3. Изучение нового материала

Ферменты сохраняют свои уникальные свойства (какие?) и вне клеток, поэтому их традиционно широко применяют в практике.

Применение ферментов

Фермент

Химико-биологический процесс

Область применения

Амилазы

Гидролиз крахмала до мальтозы и глюкозы

Спиртовая промышленность, хлебопечение, получение глюкозы

Глюкоизомераза

Глюкоза фруктоза

Кондитерская промышленность

Липазы

Гидролиз жиров и масел

Пищевая и медицинская промышленность

Пептидогидролазы

Гидролиз белка

Получение аминокислот, производство сыра, выделка кожи, медицина

Целлюлазы

Гидролиз целлюлозы до глюкозы

Производство этанола, глюкозо-фруктозных сиропов

Сахараза

Гидролиз сахарозы

Сиропопроизводство

Но если смешать фермент с реагентами, то после окончания реакции его будет очень трудно отделить от продуктов. Еще в 1916 году Дж. Нельсон и Е. Гриффин показали, что сахараза, сорбированная на угле, сохраняла свою каталитическую активность, а уголь можно отделить от раствора продуктов без особых затруднений, и, следовательно, фермент можно применять многократно.

В настоящее время (с 1971 года) применяется термин «иммобилизация» – полное или частичное ограничение движения белковых молекул. Иммобилизованными ферментами называют ферменты, искусственно связанные с нерастворимым носителем, но сохраняющие свои каталитические свойства (под запись). Иммобилизованный ферментный препарат включает в себя непосредственно фермент и носитель (природные полимеры – целлюлоза, хитин, желатин; синтетические – полистирол, поливиниловый спирт; неорганические – керамика, силикагель, графит).

Примеры химической иммобилизации:

1) образование амидной связи:

H – C(O) Cl + H2N – Ф = H – C(O) NHФ + HCl

2) образование дисульфидного мостика:

H – SH + 0,5O2 +HS – Ф = H – S – S – Ф +Н2О

3) образование оснований Шиффа:

H – C(O) H + H2N – Ф = H – CH = N – Ф + Н2О

Промышленное применение иммобилизованных ферментов:

1. Иммобилизованная сахараза работает до 10 лет, при этом активность фермента теряется незначительно:

С12Н22О11 + Н2О = С6Н12О6 + С6Н12О6

глюкоза фруктоза

инвертный сахар

2. Глюкоизомераза превращает глюкозу во фруктозу и таким образом получают глюкозо-фруктозный сироп (50 х 50).

3. Осуществлен промышленный синтез аминокислот из их аналогов на иммобилизованных ферментах:


Страница: