Доменный процессРефераты >> Технология >> Доменный процесс
2. фосфористый МФ1, МФ2, МФ3;
3. высококачественный ПВК1, ПВК2, ПВК3.
По содержанию вредных примесей (P и S) чугуны делятся на классы (А,Б и т.д.) по фосфору и на категории (I, II и т.д.) по сере.
Наиболее распространены чугуны М1, М2, М3 содержат 3,8 – 4,4 % C, 0,5…1,5 % Si, 0,5…1,5 % Mn, 0,15…0,3 % P, 0,02…0,06 % S. Чугуны этих марок применяют для выплавки стали мартеновским и кислородно – конвер-
торным способом.
Чугуны марок Б1, Б2, содержащие фосфора £ 0,06 % (класс А) и серы £0,04%(категория III), используют для передела в сталь кислым процессом.
Фосфористые чугуны МФ1, МФ2 и МФ3 содержат 1…2 % P, их переделывают в сталь в мартеновских качающихся печах.
Высококачественные чугуны ПВК1, ПВК2, ПВК3 имеют минимальное содержание вредных примесей ( например, класс А ³ 0,02 % P, категория I – 0,015% S) и используют для выплавки качественных сталей в электродуговых печах и др.
Литейные чугуны ЛКО…ЛК5 применяют для получения литых деталей. В этих чугунах содержится до 3,75 % Si (ЛКО), 0,5…1,3 % Mn, 0,02 0,07 % S (категории I, II, III). Обычные литейные чугуны содержат 0,1…0,3 % P, для художественного литья применяют фосфористые чугуны, содержащие до 1,2% P.
Доменные ферросплавы: зеркальные чугуны ЗЧ1, ЗЧ2, ЗЧ3 содержат 10…25 % Mn, ферромарганец Мн6, Мн7 (70…75 % Mn), доменный ферро - силиций Си10, Си15 (9…13 % Si иногда и больше) и до 3 % Mn. Эти сплавы применяют при выплавке сталей для раскисления и легирования.
В доменных печах из руд некоторых месторождений выплавляют также природно-легированные чугуны, содержащие Cr, V, Ni и т.п.
Доменный процесс имеет также и побочные продукты: доменный шлак, доменный (колошниковый) газ, колошниковая пыль.
Доменный шлак – побочный продукт плавки и применяется для получения строительных материалов. Широкое применение нашла мокрая грануляция шлаков: шлак выливают в воду и он превращается в мелкозернистый материал. Гранулированный шлак используют для производства цемента, шлаковых строительных кирпичей и блоков, и т.д.
Доменный или колошниковый газ. При сгорании 1 т кокса выделяется примерно 5000 м3 газа. Таким образом, в крупных печах V = 3000…3200 м3 в сутки выделяется примерно 15…17 млн. м3 газа. Он содержит значительное количество горючих составляющих (26…32 % CO и до 4 % H2), его теплотво- рная способность примерно 850…950 кал / м3. после очистки от пыли (части– цы руды, флюса, кокса) доменный газ используют как топливо для нагрева воздухонагревателей доменных печей, водяных и паровых котлов, в смеси с природным газом используют для отопления мартеновских и нагревательных печей. Колошниковая пыль содержит 45…50 % Fe и её используют при агломерации.
Изготовление детали плечно–вакуумной формовкой.
Машинную формовку применяют для производства отливок в массовом и серийном производствах. При формовке на машинах формы изготовляют в парных опоках с использованием односторонних металлических модельных плит. Машинная формовка механизирует установку опок на машину, засыпку формовочной смеси в опоку, уплотнение смеси, удаление моделей из формы, транспортирование и сборку форм. Машинная формовка обеспечивает высокую геометрическую точность полости формы по сравнению с ручной формовкой, повышает производительность труда, исключает трудоемкие ручные операции, сокращает цикл изготовления отливок. При машинной формовке формовочную смесь уплотняют прессованием, встряхиванием, пескометом, вакуумной формовкой и др.
Пленочно-вакуумную формовку (рис.2) осуществляют в следующей последовательности: модельную плиту 1 с моделью 2 накрывают разогретой полимерной пленкой толщиной не более 0.1 мм. Вакуумным насосом в воздушной коробке 7 создают вакуум 2.6-5.2 МПа. Пленка 6 плотно прижимается к модели и модельной плите. На модельную плиту устанавливают опоку 3, которую заполняют сухим кварцевым песком 5, уплотняют его с помощью вибрации и выравнивают открытую верхнюю поверхность опоки. На верхнюю поверхность накладывают разогретую полимерную пленку 4, которая за счет разрежения в 4-6 МПа плотно прилегает к опоке, что способствует уплотнению песка и устойчивости формы. После этого полу форму снимают с модели.
Изготовляют как верхнюю, так и нижнюю полуформу, затем форму собирают. Вакуумирование продолжается не только при изготовлении полу форм, но и при их сборке, заливке и затвердевании залитого металла. При заливке металла в форму пленка сгорает. Продукты сгорания выполняют роль противопригарного покрытия. Этим способом изготовляют формы для отливок массой 0,1-10 т. на автоматических формовочных линиях.
Литейные сплавы.
Для производства отливок используются сплавы чёрных металлов: серые, высокопрочные, ковкие и другие виды чугунов; углеродистые и легированные стали; сплавы цветных металлов; медные (бронзы и латуни), цинковые, алюминиевые и магниевые сплавы; сплавы тугоплавких металлов: титановые, молибденовые, вольфрамовые и др.
Литейные сплавы должны обладать высокими литейными свойствами (высокой жидкотекучестью, малыми усадкой и склонностью к образованию трещин и др.); требуемыми физическими и эксплуатационными свойствами. Выбор сплава является сложной задачей, поскольку все требования в реальном производстве учесть не представляется возможным.
Усадка литейных сплавов.
Усадка – свойство литейных сплавов уменьшать объём при затвердева- нии и охлаждении. Усадочные процессы в отливках протекают с момента заливки расплавленного металла в литейную форму вплоть до полного охлаждения отливки. Различают линейную и объёмную усадку, выражаемую в относительных единицах.
Линейная усадка – уменьшение линейных размеров отливки при её охлаждении от температуры, при которой образуется прочная корка, способная противостоять давлению расплавленного металла, до температуры окружающей среды. Линейную усадку определяют соотношением, % :
eлин = (lф - lот)*100/lот ,
где lф и lот – размеры полости формы и отливки при температуре 20°C.
На линейную усадку влияют химический состав сплава, температура его заливки, скорость охлаждения сплава в форме, конструкция отливки и литейной формы.
При охлаждении отливки происходит механическое и термическое торможение усадки. Механическое торможение возникает вследствие трения между отливкой и формой. Термическое торможение обусловлено различны- ми скоростями охлаждения различных частей отливки. Сложные по конфигу- рации отливки подвергаются совместному воздействию механического и термического торможения.
Объёмная усадка – уменьшение объёма сплава при его охлаждении в литейной форме при формировании отливки. Объёмную усадку определяют соотношением, % :
eоб = (Vф - Vот)*100/Vот ,
где Vф и Vот – объём полости формы и объём отливки при температуре 20°C.
Объёмная усадка приблизительно равна утроенной линейной усадке: