Вода и ее применение в современных технологиях
Рефераты >> Технология >> Вода и ее применение в современных технологиях

Помимо описанных аномалий у этого удивитель­ного вещества, каким является вода, существуют и другие аномалии (например, аномальная дисперсия, рассеяние, в области электрических и световых лу­чей и др.), но на них, чтобы не утруждать читателя, мы останавливаться не будем.

1.7 Испарение, транспирация, сублима­ция и конденсация.

Общеизвестно, что ис­парение—переход вещества из жидкого или твер­дого состояния в газообразное (в пар). Обычно под испарением жидкости понимают превращение ее в пар, а испарение твердых тел называется сублима­цией (или возгонкой). Обратный процесс, т. е. пере­ход вещества из газообразного состояния в жидкое, именуется конденсацией. Испарение воды с поверх­ности растений носит название транспирации.

При испарении молекулы переходят из жидкости в пар, преодолевая силы молекулярного сцепления в жидкости. Процесс испарения протекает изотерми­чески, т. е. при постоянной температуре. Скорость испарения определяется массой жидкости, испаря­ющейся за единицу времени с единицы поверхности. Одной из количественных характеристик процесса испарения воды в атмосферу является дефицит влажности, определяемый разностью между предельной упругостью водяного пара для данной темпера­туры и фактической упругостью.

Если воздух в помещении полностью насыщен парами воды или если из наполненного до краев стакана вода не убывает, но и не прибывает, это значит, что испарение отсутствует, т. е. мы имеем состояние динамического равновесия.

До последнего времени считалось, что лед может переходить в пар, минуя жидкую фазу, т. е. Происходит процесс сублимации. Однако последние более детальные исследования показали, что это далеко не так. В действительности поверхность льда покрыта даже при отрицательных температурах переохла­жденной квазижидкой пленкой связанной воды. Та­ким образом, испаряется не лед, а непрерывно по­полняющаяся пленочная жидкая вода за счет подплавления льда. Это обстоятельство имеет очень большое народнохозяйственное значение при строи­тельстве самых разнообразных подземных хранилищ в условиях многолетнемерзлых грунтов.

1.8 Твердая вода.

Когда произносят слово «вода», то подразумевают обычно, что речь идет о жидкости. Но вода часто находится в твердом сос­тоянии — в виде льда.

В первой четверти нашего века немецкий химик Г. Тамман и американский физик П. Бриджмен вы­явили шесть разновидностей льда, различающихся давлениями и температурами (рис. 7):

Лед I - обыкновенный лед, существующий при давлении до 2200 аты, устойчивый в нормальных условиях, при дальнейшем повышении давления (выше 2200 атм) пе­реходит в разновидностьII.

Лед II-с уменьшением объема на 18—20% тонет в воде, его плотность 1,2 г/см3 (при 0°С), очень неустойчив, лег­ко переходит в модификацию III.

Лед III - также тяжелее воды (его плотность больше плотности льда I, из которого непосредственно может быть полу­чена описываемая модификация, на 5%).

Лед IV -легче воды, существует при небольшом давлении и температуре немного ниже О "С, неустойчив и легко переходит в разновидность I.

Лед V — может существовать при давлении от 3,6 до 6,3 кбар, его плотность выше плотности льда III на 5,5 и воды на 6%.

Лед VI -может быть получен непосредственно из воды при тем­пературе 60 °С и давлении 16,5 кбар (при давлении 21 кбар температура этой модификации льда 76 "С), его плотность выше плотности льда V на 4 и воды на 6%.

Эти шесть модификаций льда образуют резко раз­личные полимерные группы. В одну группу могут быть включены льды, которые легче вод (лед I, IV), в другую—более тяжелые (лед III, V и VI). При плавлении льды первой группы сокращаются в объеме, а второй, наоборот, увеличиваются. Разли­чия между модификациями льда обусловлены не хи­мическими свойствами, а молекулярным строением льда.

По-видимому, здесь отчасти кроется причина образования в некоторых случаях так называемого донного льда, о котором подробнее будет идти речь в дальнейшем.

Как правило, различные модификации льда даже при высоких давлениях по плотности близки к плот­ности обычного льда (различия в плотности обычно не превышают 6%). Однако в астрофизическом цент­ре университета в Толедо (США, штат Огайо) амери­канскими учеными А. Дальсом и А. Венджером была открыта сверхплотная модификация льда при темпе­ратуре ниже минус 173 °С и давлении (6— 8) -Ю-3 мм рт. ст. Плотность этой модификации 2,3 г/см3 (по плотности он близок к гнейсу — 2,4 г/см3). Этот лед аморфен и может играть большую роль в физике планет и комет.

Замерзание природной воды зависит от темпера­туры, давления, минерализации (количества растворенных веществ) и изотопного состава. Так, при кон­центрации раствора поваренной соли NaCI 5 г/л он замерзнет при минус 0,38; 50 г/л — при минус 3,78 и, наконец, 100 г/л—при минус 7,44 °С. Дальнейшее увеличение минерализации не предохраняет раствор от замерзания, происходит процесс вымораживания, которым пользуются, например, при добыче соли. В результате образуется чистый лед, а концентрация оставшегося жидкого раствора повышается.

Каждой, температуре соответствует вполне определенная концентрация раствора. Так будет продолжаться до тех пор, пока температура не упадет до минус 21,9°С, а концентрация раствора при этом достигнет 224 г/л, после чего раствор затвердеет, образуется эвтектическая смесь кристаллов льда и соли, называемая криогидратом. По данным Н. Н. Зу­бова [1945], лед образуется из морской воды при минерализации 10 г/л при температуре 0,5; при 100 г/л — при 6,4, а при 260 г/л при минус 23 °С.

Лед очень прозрачен для солнечной энергии, осо­бенно для ультрафиолетового излучения. Снег, хотя и меньше, но тоже довольно хорошо пропускает сол­нечное излучение. Но даже самые тонкие (1—2мм)слои льда совершенно не прозрачны для тепловой длинноволновой радиации и земного излучения. Эта особенность имеет большое значение для нагре­вания воды подо льдом. Теплопроводность льда довольно высокая—53·10-4 кал/ (см · сек · °С); для срав­нения: теплопроводность воды—14, а воздуха— 0,57 кал/(см · сек · °С).

излучений и т. д.

1.9 Серебряная вода и ее применение.

Еще 2500 лет назад пер­сидский царь Кир во время походов пользовался водой, сохраняемой в серебряных сосудах. В древней Индии для обезвреживания воды от патогенной микрофлоры в нее погружали раска­ленное серебро. Многовековой опыт показал, что ионы серебра подавляют размножение многих бак­терий.

Впервые научные наблюдения над серебряной во­дой в конце XIX в. провел швейцарский ботаник К. В. Негели. С тех пор во многих странах было выполнено значительное число работ по изучению эффективных способов ее получения и применения, выпущена обильная литература о серебряной воде. В нашей стране разработаны и выпущены в продажу специальные приборы для получения в домашних условиях электролитического раствора серебра, Серебряная вода использовалась при полетах космо­навтов. В Японии и в США серебро применяется для обеззараживания воды в плавательных бассей­нах, а в Китае — для производства минеральных и фруктовых вод. Серебряная вода может применяться для консервирования сливочного масла, маргарина, меланжа, молока, микстур и даже для ускорения процессов старения вин и улучшения их вкусовых качеств.


Страница: