Векторные многоугольники в физических задачахРефераты >> Педагогика >> Векторные многоугольники в физических задачах
. (2.4 2)
Распад возможен при ε>0. Из (2.4 1) и (2.4 2) находим:
(2.4 3)
где - приведенная масса образовавшихся частиц. Скорости частиц после распада в Ц-системе: и .
Перейдем к системе отсчета, в которой первичная частица движется до распада со скоростью . Эту систему отсчета обычно называют лабораторной системой (JI-системой). Пусть скорость одной из частиц после распада в JI-системе равна , а в Ц-системе равна . Тогда
или ; (2.4 4), , (2.4 5)
где - угол выпета частицы по отношению к направлению скорости . Зависимость скорости распадной частицы от направления ее вылета в JI-системе может быть представлена с помощью диаграмм (рисунок 8).
A А
О О
Рисунок 8.
Из рисунка 8 видно, что при частица может вылететь под любым углом ; при - только вперед под углом, где
. (2.4 6)
Легко установить связь между углами вылета в JI-системе и в Ц-системе:
, (2.4 7)
причем если при каждому значению соответствует одно значение , то при каждому значению соответствует два значения (за исключением случая ).
Перейдем к изучению столкновений частиц. Задача о неупругом столкновении двух частиц обратна задаче о распаде частицы на две, рассмотренной выше. В Ц-системе справедливо выражение (2.4 1), а величина в этом случае равна приращению внутренней энергии составной частицы, образовавшейся в результате неупругого столкновения.
Рассмотрим задачу об упругом столкновении двух частиц, при котором не изменяется их внутреннее состояние. Как известно, в JI-системе скорость центра масс двух частиц с массами и скоростями и определяется выражением:
. (2.4 8)
Скорости частиц до столкновения в Ц-системе связаны с их скоростями в JI-системе известными соотношениями
, , (2.4 9)
где . В силу закона сохранения импульса импульсы обеих частиц в Ц-системе остаются после столкновения равными по модулю и направленными в противоположные стороны, в силу закона сохранения энергии модули импульсов в Ц - системе при столкновении не меняются. Таким образом, в Ц-системе результат столкновения сводится лишь к повороту скоростей обеих частиц, причем после поворота скорости остаются направленными в противоположные стороны. Если единичный вектор выражает направление скорости первой частицы после столкновения, то в Ц-системе.
,. (2.4 10)
Чтобы вернуться к JI-системе, нужно к этим выражениям добавить скорость центра масс:
(2.4 11)
Этим исчерпываются сведения, которые можно получить из одних только законов сохранения импульса и энергии. Направление вектора зависит от условий взаимодействия частиц (от взаимного расположения во время столкновения и т.п.).
Для геометрической интерпретации результатов перейдем опять к импульсам. Из (2.4 11) получим:
(2.4 12)
где - приведенная масса частицы. Векторная диаграмма импульсов, соответствующая (2.4 12), приведена на рисунке 9. Здесь
,,.
При заданных и радиус окружности и положения точек А и В неизменны, а точка С может иметь любое положение на окружности.
С