Безкорпусная герметизация полупроводниковых приборов
Рефераты >> Технология >> Безкорпусная герметизация полупроводниковых приборов

Реакция взаимодействия SiH4 и N2H4. Вместо аммиака для получения плёнок Si3N4 может быть использован гидразин N2H4.

При использовании аммиака температура осаждения пленок нитрида кремния не может быть 750С . Применение гидразина позволяет снизить температуру до 500С, так как гидразин разлагается при более низких температурах, чем аммиак. Наносят плёнки в кварцевой трубе, через которую пропускается водород, насыщенный гидразином. В эту смесь добавляют SiH4. Концентрацию SiH4 и N2H4 можно выбирать в пределах от 1:0,5 до 1:10. Скорость подачи газовой смеси в рабочую камеру 0,6 л/мин. Перед проведением процесса гидразин очищают при комнатной температуре. На рис показана зависимость скорости роста плёнок нитрида кремния от температуры для трёх различных концентраций гидразина. Скорость осаждения плёнок Si3N4 начиная с температуры750С остаётся постоянной, а при больших концентрациях гидразина и температурах выше 1000С уменьшается.

Реакция взаимодействия SiBr4 и N2. Этот метод основан на реакции взаимодействия между азотом и тетрабромидом кремния. Одним из основных требований при получении пленки Si3N4 является предотвращении возможности образовании в ней двуокиси кремния. Для этого азот перед смешиванием с тетрабромидом кремния тщательно очищают от кислорода. Получают пленку Si3 N4 при температуре 9600 С. Скорость подачи реакционной смеси устанавливают равной 100мл\мин. В течении часа на подложке осаждается пленка толщиной 10 мкм. На рисунке 39 показана схема установки для получения пленок нитрида кремния.

Реактивное катодное распыление. При этом методе реакция между кремнием и азотом происходит при низкой температуре окружающей среды с помощью электрического разряда. Наносят защитные пленки нитрида кремния в установках катодного распыления на постоянном токе с холодным или горячим катодом. Качество пленок, получаемых этим методом, изменяется в зависимости от условий осаждения. Для проведения процесса используют катод из высокочистого кремния в виде плоской пластины большого диаметра. Этот катод распыляют в смеси аргона и азота. Азот является реактивным газом, а аргон используют для повышения эффективности распыления. Кремний взаимодействует с кислородом лучше, чем с азотом, поэтому даже незначительное количество кислорода в рабочих газах (N2 и Ar) приводит к образованию пленки окиси кремния SiO2 на поверхности полупроводника. Обычно для катодного распыления используют рабочие газы, прошедшие предварительную очистку от кислорода. Получение защитных пленок Si3N4 проводят при давлениях в камере от 6,6*10*до 26 Па. Напряжение распыления может быть выбрано от 600 до 2500В, а катодный ток-0,2*0,8мА\см2. Скорость роста пленки 10 нм\мин. Применение катода с большей поверхностью позволяет получать пленки одинаковой толщины(с разбросом, не превышающим 5%) одновременно на большом количестве пластин или кристаллов.

Высокочастотное реактивное распыление. Высокочастотное реактивное распыление защитных пленок Si3N4 обладает рядом преимуществ: скорость по сравнению с катодным распылением выше, а эффект бомбардировки отрицательными частицами меньше. Кроме того, пленки, полученные в высококачественном разряде, менее чувствительны к присутствию в рабочей камере следов кислорода. Скорость осаждения при этом методе пропорциональна мощности высокочастотного разряда и увеличивается с уменьшением расстояния между мишенью и полупроводниковым кристаллом. Для создания плазмы внутри рабочей камеры используют азот. Ионы азота, ударяясь о кремниевую мишень, распыляют кремний. Атомы кремния, вылетевшие из мишени, вступают в реакцию с азотом. В результате этой реакции образуется нитрид кремния, который осаждается на полупроводниковом кристалле (подложке). Оптимальное давление азота в рабочей камере 1,3 – 0,13 Па.

Свойства защитных плёнок Si3N4 зависят от P/S, то есть от количества энергии, приходящейся в единицу времени на единицу поверхности мишени. В качестве травления для плёнок нитрида кремния используют состав из семи частей смеси 4%-го водного раствора NH4F и одной части 49%-ой HF. Скорость осаждения плёнок возрастает с увеличением P/S и приблизительно пропорционально квадрату P/S. Скорость травления, наоборот, уменьшается с возрастанием P/S.

Защита p-n-переходов легкоплавкими стеклами

Для защиты полупроводниковых приборов функциональные поверхности активных элементов p-n-переходов защищают слоем стекла, который связывает мигрирующие ионы, улучшает надежность приборов и герметизирует переход от внешних воздействий. Стеклом защищают большинство типов p-n-переходов: планарные, сплавные, диффузионные, так как окисная пленка полностью их не защищает от проникновения влаги . Состав стекла выбирают в зависимости от типа прибора и режима его сборки. КТР стекла и рабочая температура изменяются в зависимости от исходных компонентов.

Слой защитного стекла наносят как на чистую поверхность полупроводника с p-n-переходом, так и на слой окисла или пассивированную поверхность. Кроме того, стеклом защищают готовые диоды и транзисторы. В этом случае для укреплении всей структуры прибора стекло наносят на часть металлических выводов, смежных с полупроводниковым материалом. Пленка стекла защищает от утечек тока по поверхности, а также служит в качестве эффективных химического и механического барьеров против миграции примесных ионов в пассивированный слой полупроводника. Действие легкоплавких стекол не ограничивается простой защитой от внешних воздействий. Стекло в жидком состоянии действует как гетер металлических ионов, оставшихся на поверхности кристалла.

Ниже приведены некоторые составы легкоплавких стекол, применяемых для защиты p-n-переходов.

Состав1. Халькогенидное стекло, которое содержит 24% мышьяка, 67% серы, 9% йода. Готовят это стекло в нейтральной атмосфере при 500-6000С, а наносят на кристалл при 250-3000С в течении 1 мин.

Состав 2. Стекло, которое содержит модификатор, кремнезем и соли борной кислоты. Модификатор состоит из окиси алюминия с концентрацией 5-24% и цинка или кадмия, а также может включать окись бериллия. Общая концентрация модификатора в стекле не должна превышать 40%.

Состав 3. Боросиликатное стекло. Которое содержит 80 % оксида кремния, 14 % окиси бора и 6% вольфрама. Стекло наносят испарением в вакууме при 200 С и образующая плёнка обладает большой механической прочностью и высокой стойкостью к термоциклированию в диапазоне температуре от –196 до +100 С без проявления микротрещин.

Состав 4. Стеклянную плёнку на поверхности полупроводникового кристалла создают нагреванием его в течение 1-3 ч при температуре 400–700 С в среде, содержащей кислород, пары окислов или галоидов свинца, сурьмы и других металлов. Внедрение атомов свинца или сурьмы в решётку O–Si–O или O–Ge–O ослабляет процесс окисления поверхности кристалла с образованием плёнки стекла.

Состав 5. Для защиты кремниевых приборов используют порошкообразное стекло , состоящие из 50% окиси свинца, 40 % окиси кремния и 10% окиси алюминия, а для защиты германиевых приборов — 60% окиси свинца, 30% окиси кремния и 10% окиси алюминия. Состав приготавливают из суспензии в дистиллированной воде, наносят на поверхность кристалла и сплавляют при температуре 1000 С. Наносят стекло методами центрофугирования, седиментации суспензии или осаждения из паровой фазы.


Страница: