Анализ ошибок заочной математической школыРефераты >> Педагогика >> Анализ ошибок заочной математической школы
Ошибочность полученной с помощью обобщения гипотезы нередко бывает связана с нереферентностью неосознанно проведенной выборки рассмотренных для ее выдвижения объектов. Они в таких случаях обычно подбираются по принципу «что ближе лежит (или лучше знаем), то и берем». В результате предполагаемый ответ может оказаться неверным для объектов, которые "лежат дальше".
Рассмотрим конкретный пример.
Пример О2: Найдите множество всех решений неравенства x3 – x³0 (х Î R).
Ответ: [0,+¥].
Анализ ошибки: Ученик просто подобрал ответ, подставляя в неравенство только целые числа. Поэтому-то промежуток (0,1) он также включил в ответ (ведь в нем нет ни одного целого числа, а 0 и 1 удовлетворяют неравенству). Изучив нецелые числа, ученики тем не менее стараются по возможности обходится без них. Такой разрыв между теоретическими знаниями и обыденным сознанием зачастую ведет к неверным выводам вроде сделанного выше. В данной ситуации лучше всего посоветовать ученику решить неравенство методом интервалов, сравнить полученный ответ с первым и попытаться понять, почему его первоначальная гипотеза оказалась неверной.
Решения, в которых доказательство свойства для всего класса необоснованно заменяется проверкой лишь для одного или нескольких конкретных объектов этого класса, вообще встречаются в работах школьников достаточно часто. Рассмотрим еще один пример.
Задача О3: Докажите, что сумма любых десяти подряд идущих нечётных чисел делится на 20.
Решение: 1 + 3 + 5 + 7 + … + 19 = 100, делится на 20. Остальные суммы тоже делятся на 20.
Анализ решения: Из того, что свойство выполняется для одной последовательности чисел, еще не следует выполнение свойства для любой другой последовательности. Например, почему 1333 + …+ 1351 делится на 20? От ученика требуются пояснения, которые бы доказывали свойство для всех последовательностей, а не проверка свойства на конкретном примере. Поэтому и оценка решения должна вестись прежде всего на основе того, проверяет ученик свойство для частных случаев или он проводит свои рассуждения для всего класса рассматриваемых объектов. В нашем случае видно, что ученик просто подсчитал сумму, никакой предпосылки для обобщения он не выделяет.
Рассмотрим пример, когда строгого доказательства нет, но все-таки его можно считать верным.
Задача О4: Число при делении на 5 дает остаток 2. Какой может быть остаток при делении на 10?
Решение: 2 = 5×0 + 2 = 10×0 + 2, 7 = 5×1 + 2 = 10×0 + 7, 12 = 5×2 + + 2 = 10×1 +2 и так далее, при увеличении числа на 5 никаких других остатков, кроме 2 и 7 не будет.
В этом случае более строгих пояснений не требуется, так как действия с оставшимися объектами достаточно ясны.
В отличие от обобщения, при конкретизации происходит переход от общего к частному: от понятия к объекту, который этим понятием характеризуется; от теоремы к применению этой теоремы. В связи с этим возникают ошибки следующего вида: 1) неточное понимание определения; 2) неправильное применение теоремы, свойства.
В понимание структуры определения входит:
1) понимание смысла определения (раскрытие содержания понятия).
2) понимание строения определения (родовой и видовой признаки).
3) знание условий, которым должно удовлетворять правильное определение (указываются только основные признаки, не должно быть “порочного круга”).
Ученики могут понимать определение более узко (множество объектов, подходящих под определение, меньше действительного) или более широко (множество объектов, подходящих под определение, шире действительного).
Примеры:
· по определению делимости 5 делится на 2, так как существует число 2,5 такое, что 5 = 2×2,5. Множество объектов шире действительного, так как оба множителя должны быть целыми числами.
· многие школьники четырехугольник понимают как выпуклый, понятия о существовании невыпуклого четырехугольника нет, так как в школьной практике ученики работают почти исключительно с выпуклыми фигурами. Множество объектов, удовлетворяющих определению, ýже действительного.
Ученики в рассуждениях иногда используют предложения, которые к рассматриваемому объекту применять нельзя. Например:
Задача О5: Основание призмы имеет площадь S. Ее боковое ребро длиной k наклонено к основанию под углом a. Найдите объем призмы.
Решение: Объем призмы равен произведению площади основания на длину бокового ребра, поэтому V = S×k.
Анализ ошибки: В данном случае ученик воспользовался формулой вычисления объема для прямой призмы. Для наклонной призмы эта формула не верна, следовательно, применять ее нельзя. Единственный способ искоренить ошибку – показать ученику наглядно, что его рассуждения противоречивы. Для этого возьмем прямую призму. Разделим ее на две равные части так, как показано на рисунке. Составим из этих частей наклонную призму. Понятно, что их объемы должны быть равны. Если же действовать подобно ученику при вычислении объемов, то объем наклонной призмы будет больше, чем объем прямой призмы.
§2. Ошибки школьников ВЗМШ и их анализ.
Эта часть основана на конкретных работах учащихся ВЗМШ. Здесь мы выделили типичные ошибки, которые допускаются школьниками при выполнении заданий по пособиям [8] – [10], входящих в программу 8 класса Кировского отделения ВЗМШ. Анализ причины и соответствующие комментарии по ее исправлению, приведенные ниже по каждой из задач, могут быть использованы проверяющими при рецензировании работ учащихся. Кроме того, анализ причин основан на классификации ошибок, которая нами уже рассмотрена в §1. На ее основе мы и будем составлять соответствующие комментарии по задачам. Номера всех задач совпадают с их номерами в пособиях [8] – [10], которые приложены к настоящей работе.
Комбинаторика. Задания №1, №2.
Задача 1-7. AÈB содержит 25 элементов, AÇB – 10 элементов, B содержит 15 элементов. Найти количество элементов в A.
Рассуждения ученика: Так как множество B содержит 15 элементов, то множество A будет содержать 25 – 15 = 10 элементов.
Анализ ошибки: Следует заметить, что, выполняя задание “Комбинаторика”, большинство учеников впервые знакомятся с теорией множеств. В связи с этим они пытаются найти свойства, схожие со свойствами уже знакомых им объектов. Так операцию объединения двух множеств школьники часто связывают с операцией сложения двух чисел. Это вполне логично, ведь в свою очередь числа еще в младшем возрасте они изучали при помощи подручных предметов, к примеру, тех же счетных палочек, то есть, фактически, с помощью операций над множествами. При решении задачи ученик действовал с множествами, как с числами. Это было бы верно, если бы пересечение множеств было пустым, как при работе со счетными палочками. Но если это не так, то число элементов в объединении и сумма количеств элементов в каждом из множеств – это разные величины. Но ученик действовал по уже сформированному стереотипу, поэтому в ответе он получил не количество элементов множества A, а количество элементов, принадлежащих только A. Исходя из классификации, данной в §1, эту ошибку следует отнести к классу необоснованных аналогий. Причина ошибки состоит в том, что ребенок при решении задачи неосознанно работает с любыми двумя множествами как с непересекающимися. Проверяющему следует помочь ученику разобраться в понятиях пересечения и объединения, сделав упор на том, что отличает объединение множеств от сложения чисел. Это можно сделать, разобрав конкретную задачу. Целесообразно использовать круги Эйлера, так как графические иллюстрации помогают ученику лучше воспринимать информацию. Рассмотрим конкретный пример.