Управление инвестиционными рисками в коммерческом банке
Рефераты >> Банковское дело >> Управление инвестиционными рисками в коммерческом банке

где , .

В общем случае можно заметить, что чем более диверсифицирован портфель (т.е. чем большее количество ценных бумаг в него входит), тем меньше каждая доля Хi. При этом значение не меняется существенным образом, за исключением случаев пред­намеренного включения в портфель ценных бумаг с относительно низким или высо­ким значением «беты». Так как «бета» портфеля является средним значением «беты» ценных бумаг, входящих в портфель, то нет оснований предполагать, что увеличение диверсификации портфеля вызовет изменение «беты» портфеля и, таким образом, ры­ночного риска портфеля в какую-либо сторону.

Таким образом, можно утверждать, что диверсификация приводит к усреднению рыночного риска.

Совершенно другая ситуация возникает при рассмотрении собственного риска портфеля. Если предположить, что во все ценные бумаги инвестировано одинаковое количество средств, то доля Х соста­вит 1/N. Если портфель становится более диверсифицированным, то количество бумаг в нем (равное N) становится больше. Это также означает, что величина 1/N уменьшается, что приводит к уменьшению собственного риска портфеля. Можно сделать следующее заключение: диверсификация существенно уменьшает риск.

Другим фактором, часто используемым в линейных регрессионных моделях, является доходность некоторого выделенного портфеля ценных бумаг, который называется касательным. Каждому портфелю соответствует случайная величина rp – доходность.

(2.11)

- риск портфеля.

Оптимальной для любого инвестора стратегией в этой модели оказывается инвестирование части средств в касательный портфель, а части – в безрисковые облигации. Либо наоборот: получение займа для дополнительного инвестирования в касательный портфель. Чем меньше будет доля средств, вложенных в рисковые активы по отношению к безрисковым, тем меньше будет величина риска.

Очевидно, что доходности ценных бумаг, обращающихся на рынке, можно рассматривать в зависимости от времени. При этом будут зависеть от времени числовые характеристики слу­чайной величины rp. Так же, вообще говоря, будут зависеть от времени и значения параметров и .

Модель финансового рынка называется равновесной, если чи­словые характеристики входящих в нее случайных величин по­стоянны во времени.

Экономический смысл подобного предпо­ложения очевиден: рынок считается «устоявшимся», сбаланси­рованным. В этом случае можно получить некоторые конкрет­ные результаты, существенно упрощающие ситуацию.

Будем рассматривать модель зависимости доходности ценной бумаги от доходности касательного портфеля (предполагается, что безрисковая ставка получения и предоставления займов для всех участников рынка одна и та же и равна rf). Если модель рав­новесная, т.е. рынок сбалансированный, то касательный портфель удовлетворяет следующему свойству: доля каждой ценной бумаги в нем соответствует ее относительной рыночной стоимости. Такой портфель называется рыночным и определяется однозначно. Та­ким образом, рассматривая равновесные модели, мы будем ото­ждествлять понятия касательного и рыночного портфеля, доход­ность которого обозначим rM.

Итак, регрессионная модель для i-й ценной бумаги имеет вид:

(2.12)

Оказывается, в равновесном случае имеет место следующая теорема: «для всех ценных бумаг, обращающихся на рынке, ко­эффициент , один и тот же и равен безрисковой ставке».

Имеем (2.13)

Единственным параметром, характеризующим ценную бумагу, является ее чувствительность «бета» к рыночному портфелю.

Следующим методом является модель оценки финансовых активов (CAPM).

Уравнение называется рыночной линией ценной бумаги. Уравнение называется уравнением модели оценки финансовых активов. Для ее использования необходимо получить оценки параметров касательного портфеля — ожидаемой доходности и риска, а также ковариаций доходностей ценных бумаг, входящих в р, с доходностью рыночного портфеля.

Практическое значение модели оценки финансовых активов заключается в том, что она может служить для выявления неверно оцененных бумаг в неравновесной ситуации, т.е. в ситуации несбалансированного рынка. Так, если доходность ной бумаги выше той, которая задается уравнением, то бумага является переоцененной, в противоположном случае — недооцененной.

Однофакторные модели во многих случаях являются вполне адекватными, однако чаще всего они оказываются слишком уп­рощенными и тогда приходится рассматривать зависимость до­ходности ценной бумаги от нескольких (т) факторов, т.е. ли­нейные регрессионные модели вида:

(2.14)

Здесь и к – параметры, - факторы, определяющие состояние рынка (i – номер наблюдения).

Такими факторами могут быть, например, уровень инфля­ции, темпы прироста валового внутреннего продукта и др. Если данная ценная бумага относится к некоторому сектору экономи­ки, то безусловно следует рассматривать факторы, специфиче­ские для данного сектора.

Следует стремиться к возможно меньшему количеству объ­ясняющих переменных (факторов), поскольку кроме усложне­ния модели «лишние» факторы приводят к увеличению ошибок оценок.

В данной работе для простоты и в связи с устоявшимися стереотипами упростим определение (сузим понятие) рыночного риска, определив рыночный риск субъекта финансового рынка только как риск его потерь в условиях неопределенных (случайных) изменений рыночных факторов, оказывающих влияние на активы субъекта и/или портфель его активов и финансовых инструментов. Тогда измерить рыночный риск - значит определить величину и вероятность суммарных возможных потерь за заданный период времени (период поддержания позиций).

В настоящее время в мире и России задача корректной количественной оценки рыночного риска приобретает чрезвычайно большое значение. Далее мы кратко рассмотрим современные способы решения этой проблемы.

Казалось бы, современная теория финансов дает ответ на вопрос, как измерить рыночный риск. Согласно этой теории, мера риска должна учитывать величину отклонения фактического результата от ожидаемого и вероятность реализации такого исхода. В классическом подходе Гарри Марковица к решению проблемы выбора структуры инвестиционного портфеля принимается, что доходность любого рискованного финансового инструмента или портфеля в целом является случайной переменной, распределение вероятностей изменений доходности - нормальным, а мерой степени неопределенности доходности портфеля - стандартное отклонение от ожидаемого (среднего) значения. Инвестор основывает свое решение по выбору портфеля исключительно на ожидаемой доходности и стандартном отклонении. То есть для каждого портфеля инвестор должен оценить ожидаемую доходность за период владения и стандартное отклонение, а затем выбрать лучший вариант, основываясь на этих двух параметрах.


Страница: