Эволюционное учение
По степени фенотипического проявления генные мутации варьируют в широком диапазоне — от мутаций со слабыми эффектами до мутаций, вызывающих значительные изменения фенотипа. Эти два экстрёмальных типа называют соответственно малыми мутациями и макромутациями. Хорошо заметные, но не обладающие сильным действием мутации типичны для средней части диапазона. Примерами малых мутаций служат мутанты Drosophila melanogaster со статистически незначительными отклонениями от нормальной жизнеспособности или от нормального числа щетинок. Примером макромутации служит мутант tetraptera у D. melanogaster с четырьмя крыльями вместо двух. Он представляет собой резкое отклонение от двукрылости, характерной для сем. Drosophilidae и для отряда Diptera.
У диплоидных животных и растений значительную долю новых мутаций составляют рецессивные мутации, а гены дикого типа доминируют. Важное следствие рецессивности многих мутантных аллелей заключается в том, что они не подвергаются действию отбора немедленно, но могут сохраняться в диплоидной популяции на протяжении многих поколений.
Типы точковых мутаций
Точковые мутации можно разделить на несколько типов в зависимости от характера молекулярного изменения в гене. Здесь мы кратко опишем четыре типа таких мутаций (Wallace, 1981*)
1. Missense-мутация. К этому типу принадлежит мутация, описанная в предыдущем разделе. В одном из триплетов происходит замена одного основания (например, ЦТТ→ГТТ), в результате чего измененный триплет кодирует аминокислоту, отличную от той, которую кодировал прежний триплет.
2. Мутация со сдвигом рамки. Если в последовательность ДНК включается новое основание или пара оснований, то все лежащие за ними триплеты изменяются, что влечет за собой изменение синтезируемого полипептида. Возьмем, например, последовательность АТТ—ТАГ—ЦГА, перед которой включилось основание Т. В результате получится новая последовательность ТАТ—ТТА—ГЦГ—А… К такому же результату приведёт утрата одного из имеющихся оснований.
3. Nonsense-мутация. В результате замены одного основания возникает новый триплет, представляющий собой терминирующий кодон. В генетическом коде имеется три таких триплета. При такой замене синтез полипептидной цепи прекращается в новой (т. е. другой) точке, и соответственно эта цепь отличается своим свойствам от полипептида, который синтез прежде.
4. Синонимическая missence-мутация. Генетический код обладает значительной избыточностью: два или несколько его триплетов кодируют одну и ту же аминокислоту. Поэтому можно ожидать, что в некоторых случаях при замене оснований один триплет заменяется другим — синонимическим, кодирующим ту же аминокислоту. В этом случае, вследствие избыточности кода мы имеем дело с молекулярным изменением в пределах данного гена, которое не вызывает фенотипического эффекта. Такие синонимические мутации, вероятно, довольно обычны.
Частота возникновения мутаций (скорость мутирования)
Некоторые репрезентативные значения частоты возникновения спонтанных мутаций (мутаций в обычном смысле слова, т.е. вызывающих фенотипические эффекты) приведены в табл. 6.1. Следует отметить, во-первых, что частота мутаций в общем невелика, и, во-вторых, что разные гены у одного и того же вида часто сильно различаются по мутабильности. Например, у кукурузы ген окраски растения отличается высокой частотой мутаций, тогда как ген восковидно-крахмального эндосперма высоко стабилен. Наконец, в-третьих, частота возникновения мутаций у бактерий ниже, чем у многоклеточных организмов, причём различия колеблются от одного до нескольких порядков величин. Следует указать, что приведённые в таблице данные по нескольким бактериальным генам можно считать репрезентативными, поскольку они выбраны из гораздо большего количества данных. В общем, гены бактерий, по-видимому, более стабильны, чем гены эукариотических организмов.
Имеются основания считать, что по крайней мере некоторые оценки частоты мутаций у высших организмов завышены. Один из источников ошибок — трудность в различении истинных внутригенных мутаций и редких рекомбинаций очень тесно сцепленных генных единиц. Эти два явления могут приводить к одинаковому видимому результату, а именно к резкому фенотипическому изменению, передающемуся по наследству. Любой обширный набор мутаций какого-либо диплоидного организма, наблюдаемый на фенотипическом уровне, по всей вероятности, содержит помимо истинных генных мутаций некоторую долю необнаруженных редких рекомбинаций, что искажает оценку частоты мутаций в сторону повышения .
Другой возможный источник завышенной оценки частоты мутаций — невыявленное селективное преимущество гетерозиготной формы над соответствующими гомозиготами в диплоидных популяциях.
Если даже истинная частота мутаций у высших организмов на порядок ниже, чем показывают современные оценки, то всё же эта частота достаточна, чтобы поддерживать уровень мутационной изменчивости в популяциях. В популяции средней величины, продуцирующей до 100 млн. гамет, на каждый ген в среднем будет возникать по крайней мере по нескольку новых мутаций в каждом поколении.
Генотипический контроль
У Drosophila melanogaster известен ген, который вызывает высокую частоту мутаций других генов данного комплемента. Этот ген-мутатор обозначают символом Hi. У мух, гомозиготных по гену Hi, частота мутаций в 10 раз выше обычной; у гетерозигот по этому гену частота мутаций выше обычной в 2 — 7 раз. Ген Hi индуцирует как видимые, так и летальные мутации во многих генах. Он вызывает также инверсии — один из типов хромосомных мутаций (Ives, 1950; Hinton, Ives, Evans, 1952*).
Выше мы рассматривали генные мутации как случайные ошибки копирования, происходящие во время воспроизведения гена, и это, несомненно, само по себе верно. Однако, как показывают данные о действии генов-мутаторов, существует и другой аспект мутационного процесса. Возникновение новой мутационной изменчивости, которая имеет важное значение для долговременного успеха данного вида в эволюции, может быть не целиком предоставлено воле случая, а инициироваться генамимутаторами. Частота возникновения мутаций у данного вида частично может быть одним из генотипически контролируемых компонентов всей его генетической системы.
Близкородственные виды Drosophila willistoni и D. prosaltans, обитающие в тропических областях Америки, различаются по частоте возникновения мутаций. Представлены частоты летальных мутаций в хромосомах II и III у этих двух видов.
Вид D. willistoni, у которого частота мутаций выше, обычен, широко распространен и занимает разнообразные экологические ниши, тогда как D. prosaltans встречается редко и лишь в строго определённых экологических условиях. Было высказано весьма правдоподобное мнение, что высокая частота возникновения мутаций, поставляющих новые варианты, способствует повышению экологического разнообразия D. willistoni, а тем самым и обилию этого вида (Dobzhansky, Spassky, Spassky, 1952*).
Адаптивная ценность
Большинство новых мутантов характеризуется более низкой жизнеспособностью, чем нормальный, или дикий, тип. Снижение жизнеспособности может быть выражено в разной степени — от чуть заметного субвитального состояния до полулетальности и летальности. При оценке жизнеспособности мутантов Drosophiia melanogaster, возникших в результате мутаций в Х-хромосоме, 90% оказались менее жизнеспособными, чем нормальные мухи, а 10% были супервитальными, т.е. обладали повышенной жизнеспособностью. Среди 90% мух с пониженной жизнеспособностью наблюдается весь диапазон изменений от слабой субвитальности (45%) через промежуточные стадии понижения жизнеспособности до полулетальности (6%) и летальности (14%) (Тимофеев-Ресовский, 1940*).