Методы приближенного расчета безусловного отношения правдоподобияРефераты >> Радиоэлектроника >> Методы приближенного расчета безусловного отношения правдоподобия
Методы приближенного расчета безусловного отношения правдоподобия.
(Схемы совместного обнаружения – оценивания)
Во многих случаях непосредственно выполнить интегрирование многомерной функции правдоподобия по распределению неизвестных параметров не удается. В этом случае используется один из двух возможных методов приближенного расчета безусловного отношения правдоподобия, приводящих к двум существенно различным по виду, но по существу эквивалентным структурным схемам устройства обработки. Принципиальной особенностью этих схем является возможность одновременно с решением о наличии сигнала получить оценку его априори неизвестных параметров, что оправдывает название “схемы совместного обнаружения – оценивания”.
4.1 Многоканальная схема совместного обнаружения – оценивания.
Возможность вычисления безусловного отношения правдоподобия с помощью многоканальной схемы базируется на замене интегралов конечными суммами и состоит в следующем.
Пусть область изменения неизвестного параметра представляет некоторый отрезок . Разобьем этот отрезок на интервалов , границы которых обозначим . Тогда (4.1),
где - априорное распределение неизвестного параметра.
Будем считать, что функция непрерывна по . Тогда согласно обобщенной теореме о среднем для каждого интервала существует принадлежащее этому интервалу значение параметра , обеспечивающее выполнение условия , где - отношение правдоподобие, рассчитанное при значении параметра . Поэтому сумма (4.1) может быть представлена в виде (4.2),
где – вероятность того, что параметр принадлежит интервалу. Из формулы (4.2) следует, что безусловное отношение правдоподобия представляет собой выборочное среднее значений парциальных статистик.
Соответствующую формуле (4.2) схему обработки можно представить в виде некоторого - канального устройства, каждый канал которого настроен на некоторое фиксированное значение неизвестного параметра . Очевидно, что при , т.е. при неограниченном увеличении числа интервалов разбиения, сумма (4.2) независимо от способа разбиения сходится к значению интеграла (4.1), т.е. при изображенная на рис.4.1 схема реализует обработку, близкую к оптимальной.
Поскольку, как отмечено выше, способ разбиения диапазона значений неизвестного параметра на интервалы мало влияет на характеристики алгоритма этот способ может выбираться исходя из удобства расчетов; например исходя из условия, чтобы вероятность попадания параметра для всех интервалов была одинаковой: .
Если неизвестный параметр является измеряемым, т.е. его значение после обнаружения сигнала представляет самостоятельный интерес, то максимально правдоподобная оценка этого параметра соответствует значению параметра , при котором . Выбор номера соответствующего канала и выдачу на выход оценки неизвестного параметра обеспечивают схема поиска максимума и ключ, открываемый в момент принятия решения об обнаружении сигнала.
Рассмотренная схема позволяет дать приближенную количественную оценку влияния априорной неопределенности на параметры обнаружителя, использующего статистику безусловного отношения правдоподобия. Для этого проанализируем ход накопления статистики в каналах, содержащих и не содержащих сигнал.
Обозначим через индекс канала, содержащего сигнал. Очевидно, что формула (4.2) может быть представлена в виде двух слагаемых
(4.3)
В каналах, где сигнал от цели отсутствует, среднее значение статистики на любом шаге равно единице:
(тождество отражает условие нормировки плотности ). Следовательно, мат. ожидание второго слагаемого формулы (4.3) равно . В канале, содержащем цель, , поэтому отношение правдоподобия этого канала нарастает (в среднем) по геометрической прогрессии (мат. ожидание произведения независимых величин равно произведению их мат. ожиданий). Следовательно мат. ожидание статистики (4.2) может быть записано в виде:
Рис.4.2.
Таким образом, “вклад” канала, содержащего сигнал, в безусловное отношение правдоподобия по мере наблюдения нарастает, т.е. суммарный отклик схемы (4.2) стремится к отклику канала, “согласованного” с сигналом (схема как бы настраивается на истинное значение априори неизвестного параметра, см. рис.4.2). Наличие “пустых” каналов при этом учитывается коэффициентом , характеризующим “плату” за априорную неопределенность. За счет этого коэффициента среднее приращение логарифма отношения правдоподобия (информация Кульбака – Леблера) уменьшается примерно на .