Лазерные оптико-электронные приборы
Рефераты >> Радиоэлектроника >> Лазерные оптико-электронные приборы

С тех пор оптоэлектроника непрерывно развивается, и полагают, что до конца ХХ века она превратится в огромную отрасль науки и техники, соизмеримую с электроникой. Появление в начале 1960-х годов лазеров способствовало ускорению развития оптоэлектроники. Потенциальные характеристики лазеров описаны еще в 1958 г., а уже в 1960 г. был создан самый первый лазер — газовый, на основе смеси гелия и неона. Генерирующие непрерывное излучение при комнатной температуре полупроводниковые лазеры, которые в настоящее время получили наиболее широкое применение, стали выпускаться с 1970 г.

Появление оптических волокон

Важным моментом в развитии оптоэлектроники является создание оптических волокон. Особенно интенсивными исследования стали в конце 1960-x годов, а разработка в 1970 г. американской фирмой "Корнинг" кварцевого волокна с малым затуханием (20 дБ/км) явилась эпохальным событием и послужила стимулом для увеличения темпов исследований и разработок на все 1970-е годы.

На рис. 2 показано снижение минимальных потерь передачи для различных оптических волокон на протяжении минувших десяти с лишним лет. Можно заметить, что для кварцевых оптических волокон потери за 10 лет (в 1970-е годы) уменьшились примерно на два порядка.

Изначальной и главной целью разработки оптических волокон было обеспечение ими оптических систем связи. Тем не менее в 1970-е годы, когда в технике оптических волокон применительно к оптическим системам связи были достигнуты уже значительные успехи, влияние волокон на развитие волоконно-оптических датчиков, о которых пойдет речь в этой книге, оказалось несколько неожиданным.

Одно- и многомодовые оптические волокна.

Рис. 3. Одномодовое (а) и многомодовое (б) оптическое волокно

Оптическое волокно обычно бывает одного из двух типов: одномодовое, в котором распространяется только одна мода (тип распределения передаваемого электромагнитного поля), и многомодовое — с передачей множества (около сотни) мод. Конструктивно эти типы волокон различаются только диаметром сердечника — световедущей части, внутри которой коэффициент преломления чуть выше, чем в периферийной части — оболочке (рис. 3).

В технике используются как многомодовые, так и одномодовые оптические волокна. Многомодовые волокна имеют большой (примерно 50 мкм) диаметр сердечника, что облегчает их соединение друг с другом. Но поскольку групповая скорость света для каждой моды различна, то при передаче узкого светового импульса происходит его расширение (увеличение дисперсии). По сравнению с многомодовыми у одномодовых волокон преимущества и недостатки меняются местами: дисперсия уменьшается, но малый (5 .10 мкм) диаметр сердечника значительно затрудняет соединение волокон этого типа и введение в них светового луча лазера.

Вследствие этого одномодовые оптические волокна нашли преимущественное применение в линиях связи, требующих высокой скорости передачи информации (линии верхнего ранга в иерархической структуре линий связи), а многомодовые чаще всего используются в линиях связи со сравнительно невысокой скоростью передачи информации. Имеются так называемые когерентные волоконно-оптические линии связи, где пригодны только одномодовые волокна. В многомодовом оптическом волокне когерентность принимаемых световых волн падает, поэтому его использование в когерентных линиях связи непрактично, что и предопределило применение в подобных линиях только одномодовых оптических волокон.

Напротив, хотя при использовании оптических волокон для датчиков вышеуказанные факторы тоже имеют место, но во многих случаях их роль уже иная. В частности, при использовании оптических волокон для когерентных измерений, когда из этих волокон формируется интерферометр, важным преимуществом одномодовых волокон является возможность передачи информации о фазе оптической волны, что неосуществимо с помощью многомодовых волокон. Следовательно, в данном случае необходимо только одномодовое оптическое волокно, как и в когерентных линиях связи. Тем не менее, на практике применение одномодового оптического волокна при измерении нетипично из-за небольшой его дисперсии. Короче говоря, в сенсорной оптоэлектронике, за исключением датчиков-интерферометров, используются многомодовые оптические волокна. Это обстоятельство объясняется еще и тем, что в датчиках длина используемых оптических волокон значительно меньше, чем в системах оптической связи.

Характеристики оптического волокна как структурного элемента датчика и систем связи

Прежде чем оценивать значимость этих характеристик для обеих областей применения, отметим общие достоинства оптических волокон:

· широкополосность (предполагается до нескольких десятков терагерц);

· малые потери (минимальные 0,154 дБ/км);

· малый (около 125 мкм) диаметр;

· малая (приблизительно 30 г/км) масса;

· эластичность (минимальный радиус изгиба 2 MM);

· механическая прочность (выдерживает нагрузку на разрыв примерно 7 кг);

· отсутствие взаимной интерференции (перекрестных помех типа известных в телефонии "переходных разговоров");

· безындукционность (практически отсутствует влияние электромагнитной индукции, а следовательно, и отрицательные явления, связанные с грозовыми разрядами, близостью к линии электропередачи, импульсами тока в силовой сети);

· взрывобезопасность (гарантируется абсолютной неспособностью волокна быть причиной искры);

· высокая электроизоляционная прочность (например, волокно длиной 20 см выдерживает напряжение до 10000 B);

· высокая коррозионная стойкость, особенно к химическим растворителям, маслам, воде.

В области оптической связи наиболее важны такие достоинства волокна, как широкополосность и малые потери, причем в строительстве внутригородских сетей связи наряду с этими свойствами особое значение приобретают малый диаметр и отсутствие взаимной интерференции, а в электрически неблагоприятной окружающей среде — безындукционность. Последние же три свойства в большинстве случаев здесь не играют какой-либо заметной роли.

В практике использования волоконно-оптических датчиков имеют наибольшее значение последние четыре свойства. Достаточно полезны и такие свойства, как эластичность, малые диаметр и масса. Широкополосность же и малые потери значительно повышают возможности оптических волокон, но далеко не всегда эти преимущества осознаются разработчиками датчиков. Однако, с современной точки зрения, по мере расширения функциональных возможностей волоконно-оптических датчиков в ближайшем будущем эта ситуация понемногу исправится.

Как будет показано ниже, в волоконно-оптических датчиках оптическое волокно может быть применено просто в качестве линии передачи, а может играть роль самого чувствительного элемента датчика. В последнем случае используются чувствительность волокна к электрическому полю (эффект Керра), магнитному полю (эффект Фарадея), к вибрации, температуре, давлению, деформациям (например, к изгибу). Многие из этих эффектов в оптических системах связи оцениваются как недостатки, в датчиках же их появление считается скорее преимуществом, которое следует развивать.


Страница: