Уровень инсулина, глюкозы и лактаты в крови
Рефераты >> Биология >> Уровень инсулина, глюкозы и лактаты в крови

КрФ обладает большим запасом энергии и высоким сродством к АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с КрФ на молекулу АДФ с образованием креатина и АТФ. Эта реакция катализируется ферментом креатинкиназой. В связи с этим данный путь ресинтеза АТФ ещё называют креатинкиназным. Креатинфосфатная реакция обратима, но её равновесие смещено в сторону образования АТФ, и поэтому она начинает осуществляться сразу же, как только в миоцитах появляются первые порции АДФ.

При мышечной работе активность креатинкиназы значительно возрастает за счёт активирующего воздействия на неё ионов кальция, концентрация которых в саркоплазме под действием нервного импульса увеличивается почти в 1000 раз [39]. Другой механизм регуляции креатинфосфатной реакции связан с активирующим воздействием на креатинкиназу креатина, образующегося в ходе данной реакции. За счёт этих механизмов активность креатинкиназы в начале мышечной работы резко увеличивается и креатинфосфатная реакция очень быстро достигает максимальной скорости.

Креатинфосфат, обладая большим запасом химической энергии, является веществом непрочным. От него легко может отщепляться фосфорная кислота, в результате чего происходит циклизация остатка креатина, приводящая к образованию креатинина, которое происходит без участия ферментов, спонтанно. Образовавшийся креатинин в организме не используется и выводится с мочой. Поэтому по выделению креатинина с мочой можно судить о содержании креатинфосфата в мышцах, так как в них находятся основные запасы этого соединения.

Синтез креатинфосфата в мышечных клетках происходит во время отдыха путём взаимодействия креатина с избытком АТФ. Частично запасы КрФ могут восстанавливаться и при мышечной работе умеренной мощности, при которой АТФ синтезируется за счёт тканевого дыхания в таком количестве, которого хватает и на обеспечение сократительной функции миоцитов, и на восполнение запасов креатинфосфата [19]. Поэтому во время выполнения физической работы креатинфосфатная реакция может включаться многократно.

Образование креатина в печени происходит с использованием трёх аминокислот: глицина, метионина и аргинина. В спортивной практике для повышения в мышцах концентрации КрФ используют в качестве пищевых добавок препараты глицина и метионина. Креатинфосфатный путь ресинтеза АТФ характеризуется следующими величинами принятых количественных критериев:

Максимальная мощность составляет 900 – 1100 кал/мин×кг, что в три раза выше соответствующего показателя для аэробного ресинтеза [28]. Такая большая величина обусловлена высокой активностью фермента креатинкиназы и, следовательно, очень высокой скоростью креатинфосфатной реакции.

Время развёртывания всего 1 – 2 секунды. Исходных запасов АТФ в мышечных клетках хватает на обеспечение мышечной деятельности как раз в течение 1 – 2 с, и к моменту их исчерпания креатинфосфатный путь образования АТФ уже функционирует со своей максимальной скоростью. Такое малое время развёртывания объясняется действием механизмов регуляции активности креатинкиназы, позволяющих резко повысить скорость этой реакции.

Время работы с максимальной скоростью всего лишь 8 – 10 с, что связано с небольшими исходными запасами креатинфосфата в мышцах.

Главными преимуществами креатинфосфатного пути образования АТФ являются очень малое время развёртывания и высокая мощность, что имеет крайне важное значение для скоростно-силовых видов спорта. Главным недостатком этого способа синтеза АТФ, существенно ограничивающим его возможности, является короткое время его функционирования. Время поддержания максимальной скорости всего 8 – 10 с, к концу 30-й его скорость снижается вдвое [30]. А к концу 3-й минуты интенсивной работы креатинфосфатная реакция в мышцах практически прекращается.

Исходя из такой характеристики креатинфосфатного пути ресинтеза АТФ, следует ожидать, что эта реакция окажется главным источником энергии для обеспечения кратковременных упражнений максимальной мощности. Креатинфосфатная реакция может неоднократно включаться во время выполнения физических нагрузок, что делает возможным быстрое повышение мощности выполняемой работы, развития ускорения на дистанции и финишный рывок.

1.4. ИНСУЛИН И ОБМЕН ГЛЮКОЗЫ

Поджелудочная железа, по сути дела, представляет собой два разных органа, объединённых в единую морфологическую структуру. Её ацинарная часть выполняет экзокринную функцию, секретируя в просвет двенадцатиперстной кишки ферменты и ионы, необходимые для процессов пищеварения. Эндокринная часть железы состоит из 1 – 2 млн. островков Лангерганса, на долю которых приходится 1 – 2% всей массы поджелудочной железы. Островки в поджелудочной железе были обнаружены в 1860 году. Лангерганс, которому принадлежит это открытие, не представлял себе, что удаление поджелудочной железы ведёт к сахарному диабету. Это было доказано в 1921 году Бантингом и Бестом. Экстрагировав подкисленным этанолом ткань поджелудочной железы, они выделили некий фактор, обладающий мощным гипогликемизирующим действием. Этот фактор был назван инсулином. Вскоре было установлено, что инсулин, содержащийся в островках поджелудочной железы крупного рогатого скота и свиней, активен и у человека. Инсулин во многих отношениях может служить моделью пептидных гормонов. Он первым из гормонов этой группы был получен в очищенном виде, кристаллизован и синтезирован химическим путём и методами генной инженерии [3,26]. Исследование путей биосинтеза привело к созданию концепции пропептидов.

Молекула инсулина – полипептид, состоящий из двух цепей, А и В, связанных между собой двумя дисульфидными мостиками, соединяющими остаток А7 с остатком В7 и остаток А20 с остатком В19. Третий дисульфидный мостик связывает между собой остатки 6 и 11 А-цепи. Локализация всех трёх дисульфидных мостиков постоянна, а А- и В-цепи у представителей большинства видов имеют по 21 и 30 аминокислот соответственно. Молекулярная масса человеческого инсулина 5734. В обеих цепях во многих положениях встречаются замены, не оказывающие влияние на биологическую активность гормона, однако наиболее часты замены по положениям 8,9 и 10 А-цепи. Из этого следует, что данный участок не имеет критического значения для биологической активности инсулина. Однако некоторые участки и области молекулы инсулина обладают высокой консервативностью. К ним относятся 1) положения трёх дисульфидных мостиков 2) гидрофобные остатки в С-концевом участке В-цепи 3) С- и N-концевые участки А-цепи. Использование химических модификаций и замен отдельных аминокислот шести этих участков помогает идентифицировать сложный активный центр.

Синтез инсулина и его упаковка в гранулы происходит в определённом порядке. Проинсулин синтезируется на рибосомах шероховатого эндоплазматического ретикулума. Затем в цистернах этой органеллы происходит ферментативное отщепление лидерной последовательности, образование дисульфидных мостиков и складывание молекулы. После этого молекула инсулина переносится в аппарат Гольджи, где начинается протеолиз и упаковка в секреторные гранулы. Созревание гранул продолжается по мере продвижения по цитоплазме в направлении плазматической мембраны.


Страница: