Теория эволюционного развития. Материальные основы наследственности
Индивидуальные наследственные уклонения, борьба за существование и естественный отбор в длинном ряду поколений приведут к изменению видов в направлении все большей приспособленности к конкретным условиям существования. Приспособленность организмов всегда относительна. Другим результатом естественного отбора является многообразие видов, населяющих Землю.
1.4. Влияние дарвинизма на развитие биологии
На основе дарвинизма перестраивались все отрасли биологической науки. Палеонтология стала выяснять пути развития органического мира; систематика - родственные связи и происхождение систематических групп; эмбриология - устанавливать общее в стадиях индивидуального развития организмов в процессе эволюции; физиология человека и животных - сравнивать их жизнедеятельность и выявлять родственные связи между ними.
В начале XX в. началось экспериментальное изучение естественного отбора, быстро развивались генетика, экология. Идеи Дарвина в России встретили поддержку передовой интеллигенции. В вузах либеральная часть профессуры перестраивала курс зоологии и ботаники в свете дарвинизма. Появились статьи в журналах, освещавшие учение Дарвина. В 1864 г. "Происхождение видов" впервые было опубликовано на русском языке.
Большая роль в развитии биологической науки на основе дарвинизма принадлежит нашим отечественным ученым. Братья Ковалевские, К.А. Тимирязев, И.И. Мечников, И.П. Павлов, Н.И. Вавилов, А.Н. Северцов, И.И. Шмальгаузен, С.С. Четвертиков и многие другие корифеи русской науки положили в основу своих исследований идеи Дарвина.
2. Физические и химические основы явлений наследственности
Революция в генетике была подготовлена всем ходом могущественного развития идей и методов менделизма и хромосомной теории наследственности. Уже в недрах этой теории было показано, что существуют явления трансформаций у бактерий; что хромосомы - это комплексные компоненты, состоящие из белка и нуклеиновой кислоты. Молекулярная генетика - это истинное детище всего XX века, которое на новом уровне впитало в себя прогрессивные итоги развития хромосомной теории наследственности, теории мутации, теории гена, методов цитологии и генетического анализа. На путях молекулярных исследований в течение последних 20 лет генетика претерпела по истине революционные изменения. Она является одной из самых блестящих участниц в общей революции современного естествознания. Благодаря ее развитию появилась новая концепция о сущности жизни, в практику вошли новые могущественные методы управления и познания наследственности, оказавшие влияние на сельское хозяйство, медицину и производство.
Основным в этой революции было раскрытие молекулярных основ наследственности. Оказалось, что сравнительно простые молекулы дезоксирибонуклеиновых кислот (ДНК) несут в своей структуре запись генетической информации. Эти открытия создали единую платформу генетиков.
Оказалось, что генетическая информация действует в клетке по принципам управляющих систем, что ввело в генетику во многих случаях язык и логику кибернетики.
Вопреки старым воззрениям на всеобъемлющую роль белка как основу жизни, эти открытия показали, что в основе преемственности жизни лежат молекулы нуклеиновых кислот. Под их влиянием в каждой клетке формируются специфические белки. Управляющий аппарат клетки собран в ее ядре, точнее - в хромосомах, из линейных наборов генов. Каждый ген, являющийся элементарной единицей наследственности, вместе с тем представляет собой сложный микромир в виде химической структуры, свойственной определенному отрезку молекулы ДНК.
Таким образом, современная генетика открывает перед человеком сокровенные глубины организации и функций жизни. Как всякие великие открытия, хромосомная теория наследственности, теория гена и мутаций (учения о формах изменчивости генов и хромосом) оказывали глубокое влияние на жизнь. Развитие физико-химической сущности явления наследственности неразрывно связано с выяснением материальных основ всех явлений жизни. В явлении жизни нет ничего кроме атомов и молекул, однако, форма их движения качественно специфична. Наследственность не автономное, независимое свойство, оно неотделимо от проявления свойств клетки в целом.
Взаимодействие молекул ДНК, белков и рибонуклеиновых кислот (РНК) лежит в основе жизнедеятельности клетки и ее воспроизведения. Поскольку явление наследственности, в общем смысле этого понятия, есть воспроизведение по поколениям сходного типа обмена веществ, очевидно, что общим субстратом наследственности является клетка в целом.
Явление наследственности в целом не обусловлено исключительно генами и хромосомами, которые представляют собой все же только элементы более сложной системы - клетки. Это не умаляет роли генов и ДНК, в них записана генетическая информация, т.е. возможность воспроизведения определенного типа обмена веществ. Однако реализация этой возможности, т.е. процессы развития особи или процессы жизнедеятельности клетки, базируется целостной саморегулирующейся системой в виде клетки или организма. В настоящее время в качестве первоочередной встает задача выяснить, как осуществляется высший синтез физических и химических форм движения, появление которого знаменовало собой возникновение жизни и наследственности. Явление жизни нельзя свести к химии и физике, ибо жизнь - это особая форма движения материи. Однако ясно, что сущность этой особой формы движения материи не может быть принята без знания природы простых форм, которые входят в него уже как бы в "снятом виде". Поэтому проблема физических и химических основ наследственности является ныне одной из центральных в генетике. Ее разработка должна заложить основы для решения проблем наследственности во всей сложности ее биологического содержания. Совершенно ясно, что важнейшие вопросы философского материализма связаны с разработкой этой проблемы. Материалистическая постановка решающих вопросов наследственности не мыслима без признания того, что явление наследственности материально обусловлено, что в клетке, которая образует поколение, должны иметься определенные материальные вещества и структуры, физические и химические формы движения которых благодаря их специфическому взаимодействию создают явление наследственности.
В свете сказанного вполне понятно то значение, которое имеет полная физико-химическая расшифровка строения биологически важных молекул. Несколько лет назад впервые химическими средствами вне организма была синтезирована белковая молекула - гормон инсулин, управляющий углеводным обменом в организме человека. Недавно была расшифрована физическая структура двух белков - дыхательных пигментов крови и мышц - гемоглобина и миоглобина. Для молекулы фермента лизоцина физики открыли пространственное расположение каждого из тысячи атомов, участвующих в построении его молекул. Установлено место в молекуле, ответственное за каталитический эффект этого биологического катализатора, не допускающего проникновения вирусов в клетку.
После этих событий, связанных с раскрытием природы генетического кода и генетических механизмов в синтезе белков, впервые удалось дать полный химический анализ и формулы строения молекулы транспортной РНК. Все эти открытия, включая замечательный факт, что синтез молекул ДНК идет под координирующим влиянием затравки (матричной ДНК), показывает, какой серьезный шаг сделала генетическая биохимия к созданию прототипа живого.