Структурные уровни организации материи. Структура и её роль в организации материи
Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.
Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.
Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos – целый), согласно которому целое всегда предшествует частям и всегда важнее частей.
Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.
Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация – это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.
В современной научно обоснованной концепции системной организации материи обычно выделяют три структурных уровня материи:
микромир – мир атомов и элементарных частиц – предельно малых непосредственно ненаблюдаемых объектов, размерность от 10-8 см до 10-16 см, а время жизни – от бесконечности до 10-24 с.
макромир – мир устойчивых форм и соразмерных человеку величин: земных расстояний и скоростей, масс и объемов; размерность макрообъектов соотносима с масштабами человеческого опыта – пространственные величины от долей миллиметра до километров и временные измерения от долей секунды до лет.
мегамир – мир космоса (планеты, звездные комплексы, галактики, метагалактики); мир огромных космических масштабов и скоростей, расстояние измеряется световыми годами, а время миллионами и миллиардами лет;
Изучение иерархии структурных уровней природы связано с решением сложнейшей проблемы определения границ этой иерархии как в мегамире, так и в микромире. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и их объединений.
Микромир, будучи подуровнем макромиров и мегамиров, обладает совершенно уникальными особенностями и поэтому не может быть описан теориями, имеющими отношение к другим уровням природы. В частности, этот мир изначально парадоксален. Для него не применим принцип «состоит из». Так, при соударении двух элементарных частиц никаких меньших частиц не образуется. После столкновения двух протонов возникает много других элементарных частиц – в том числе протонов, мезонов, гиперонов. Феномен «множественного рождения» частиц объяснил Гейзенберг: при соударении большая кинетическая энергия превращается в вещество, и мы наблюдаем множественное рождение частиц. Микромир активно изучается. Если 50 лет назад было известно всего лишь 3 типа элементарных частиц (электрон и протон как мельчайшие частицы вещества и фотон как минимальная порция энергии), то сейчас открыто около 400 частиц. Второе парадоксальное свойство микромира связано с двойственной природой микрочастицы, которая одновременно является волной и корпускулой. Поэтому ее невозможно строго однозначно локализовать в пространстве и времени. Эта особенность отражена в принципе соотношения неопределенностей Гейзенберга.
Наблюдаемые человеком уровни организации материи осваиваются с учетом естественных условий обитания людей, т.е. с учетом наших земных закономерностей. Однако это не исключает предположения о том, что на достаточно удаленных от нас уровнях могут существовать формы и состояния материи, характеризующиеся совсем другими свойствами. В связи с этим ученые стали выделять геоцентрические и негеоцентрические материальные системы.
Геоцентрический мир – эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба. Негеоцентрические системы – особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением, нежели земные. Существует предположение о том, что микромир и мегамир – это окна в негеоцентрические миры, а значит, их закономерности хотя бы в отдаленной степени позволяют представить иной тип взаимодействий, чем в макромире или геоцентрическом типе реальности.
Между мегамиром и макромиром нет строгой границы. Обычно полагают, что он
начинается с расстояний около 107 и масс 1020 кг. Опорной точкой начала мегамира может служить Земля (диаметр 1,28×10+7 м, масса 6×1021 кг). Поскольку мегамир имеет дело с большими расстояниями, то для их измерения вводят специальные единицы: астрономическая единица, световой год и парсек.
Астрономическая единица (а.е.) – среднее расстояние от Земли до Солнца, равное 1,5×1011м.
Световой год – расстояние, которое проходит свет в течение одного года, а именно 9,46×1015м.
Парсек (параллакс-секунда) – расстояние, на котором годичный параллакс земной орбиты (т.е. угол, под которым видна большая полуось земной орбиты, расположенная перпендикулярно лучу зрения) равен одной секунде. Это расстояние равно 206265 а.е. = 3,08×1016 м = 3,26 св. г.