Структура и функции ядра
Количество ядрышек в клетке может меняться, однако их число на ядро зависит от генного баланса клетки. Было найдено, что в образовании ядрышек участвуют определенные места некоторых хромосом, связь которых с ядрышком можно хорошо проследить в телофазе и профазе. Такие хромосомы, как правило, имеют вторичные перетяжки, зоны которых представляют собой места, где идет развитие ядрышек. Мак Клинток (1934) назвал эти участки хромосом “ядрышковыми организаторами”.
Места вторичных перетяжек особенно характерны для расположения ядрышковых организаторов, но последние иногда могут находиться на концах хромосом или в нескольких местах по длине хромосомы.
Общее число ядрышек на ядро определяется числом ядрышковых организаторов и увеличивается согласно плоидности ядра. Однако часто количество ядрышек на ядро бывает меньше числа ядрышковых организаторов. Было показано, что ядрышки могут сливаться; кроме того, в образовании одного ядрышка иногда участвует несколько организаторов.
Еще в работах М.С.Навашина (1934) было показано, что хромосомный локус, который в нормальных условиях образует крупное ядрышко, становится неактивным, когда после гибридизации в ядре появляется более “сильный” локус на другой хромосоме. Тот факт, что в определенных условиях может подавляться активность одних ядрышковых организаторов или же повышаться активность других, бывших до этого в латентном, скрытом состоянии, указывает на то, что в клетках поддерживается определенный баланс количества ядрышкового материала или, другими словами, регулируется “валовая” продукция, выдаваемая ядрышками.
Исходя из перечисленных выше фактов, можно сделать следующие заключения:
образования ядрышек и их число связаны с активностью определенных участков хромосом - ядрышковых организаторов, которые расположены большей частью в зонах вторичных перетяжек;
изменения в числе ядрышек в клетках данного типа могут происходить за счет слияния ядрышек или за счет сдвигов в хромосомном балансе клетки.
Физиология и химия ядрышка
Ядрышко по сравнению с другими компонентами клетки характеризуется как самая плотная структура с наиболее высокой концентрацией РНК, с чрезвычайно высокой активностью в отношении синтеза РНК.
Концентрация РНК в ядрышках всегда выше концентрации РНК в других компонентах клетки, так концентрация РНК в ядрышке может быть в 2-8 раз выше, чем в ядре, и в 1-3 раза выше, чем в цитоплазме. Отношение концентрации РНК в ядре, ядрышке и цитоплазме клеток печени мыши составляет 1:7,3:4,1, в клетках поджелудочной железы - 1:9,6:6,6.
В ядрышке не обнаруживается ДНК, но все же при исследовании фиксированных клеток вокруг ядрышка всегда выделяется зона хроматина. Этот околоядрышковый хроматин, по данным электронной микроскопии, представляется, как интегральная часть сложной структуры ядрышка.
Ядрышко - одно из самых активных мест в клетке по включению предшественников в РНК. Ядрышковая РНК является предшественником цитоплазматической РНК.
Цитоплазматическая РНК синтезируется в ядрышке.
РНК ядрышек
Оценивая общее содержание в ядрышковых фракциях белков, РНК и ДНК, можно видеть, что на долю РНК приходится около 10% всей массы ядрышка.
Содержание РНК, ДНК и белка в изолированных ядрышках (сухой вес в %)
Объект |
РНК |
ДНК |
Белок |
РНК/ДНК |
Печень крысы |
11,0 |
8,0 |
78,0 |
1,4 |
Регенерирующая печень (6 ч) |
7,6 |
4,6 |
87,8 |
1,7 |
Регенерирующая печень (18 ч) |
15,5 |
5,4 |
79,1 |
2,9 |
Печень морской свинки |
4,1 |
9,5 |
86,4 |
0,43 |
Стебель гороха (4 дня) |
15,11 |
10,6 |
74,0 |
1,5 |
Проростки гороха (36 ч) |
16,7 |
6,4 |
76,9 |
2,6 |
Так как основную массу цитоплазматической РНК составляет рибосомная РНК, то можно сказать, что ядрышковая РНК принадлежит к этому классу.
Подтверждением представлений того, что именно ядрышко является местом синтеза рРНК и образования рибосом, послужило то, что из ядрышковых препаратов были выделены РНП-частицы, которые как по составу РНК (по седиментационным свойствам), так и по размеру можно охарактиризовать как рибосомы или их предшественники с различными коэффициентами седиментации.
ДНК ядрышек
Биохимическими исследованиями обнаружено в выделенных ядрышках определенное количество ДНК, которую можно отождествить с околоядрышковым хроматином или с ядрышковыми организаторами хромосом. Содержание ДНК в выделенных ядрышках - 5-12% от сухого веса и 6-17% от всей ДНК ядра.
ДНК ядрышкового организатора - это та самая ДНК, на которой происходит синтез ядрышковой, т.е. рибосомной, РНК.
Таким образом из биохимических работ появились представления о том, что в ядрышке на ДНК локализованы многочисленные одинаковые гены для синтеза рРНК. Синтез рРНК идет путем образования огромного предшественника и дальнейшего его превращения (созревания) в более короткие молекулы РНК для большой и малой субъедениц рибосом.
Изучая ядрышки ооцитов тритонов, исследователи столкнулись с интересным явлением - сверхчисленностью ядрышек. У X. laevis во время роста ооцита появляется до 1000 мелких ядрышек, не связанных с хромосомами. Именно эти ядрышки выделил О.Миллер. вместе с этим на ядро ооцита увеличивается количество рДНК. Это явление получило название амплификации. Оно заключается в том, что происходит сверхрепликация зоны ядрышкового организатора, многочисленные копии отходят от хромосом и становятся дополнительно работающими ядрышками. Такой процесс необходим для накопления огромного (1012) количества рибосом на яйцевую клетку, что обеспечит в будущем развитие эмбриона на ранних стадиях даже при отсутствии синтеза новых рибосом. Сверхчисленные ядрышки после созревания яйцевой клетки исчезают.