Исследование усилительных каскадовРефераты >> Радиоэлектроника >> Исследование усилительных каскадов
.
При глубокой ООС, когда фактор обратной связи F=(K/K+)>>1,
Rвх.ус » R3, (3.8)
то есть входное сопротивление определяется величиной навесного элемента R3.
Выходное сопротивление неинвертирующего усилителя
Rвых.ус » Rвых.оу / (1+F) << Rвых.оу . (3.9)
Для установки нуля неинвертирующего усилителя используется вход «–» (см. рис.3.5).
Важным частным вариантом схемы рис.3.4 при Rос= ¥, является схема повторителя напряжения на ОУ, представлена на рис.3.6.
Рис.3.6.
Повторитель охвачен 100%-й ООС (F=К>>1),имеет единичный коэффициент передачи по напряжению и входные и выходные параметры, близкие к параметрам идеального усилителя:
K+=1,
Rвх.ус = (Rвх.оу К)® ¥, (3.10)
Rвых.ус = (Rвых.оу / К)®0.
Дифференциальное включение ОУ.
Схема дифференциального включения ОУ (рис.3.7) использует инвертирующий и неинвертирующий входы
рис.3.7
Дифферециальный усилитель (ДУ) усиливает дифференциальные входные сигналы Uвх.диф.=(Uc2–Uс1), действующие между инвертирующими и неинвертирующими входами усилителя. ДУ ослабляет синфазные входные сигналы Uвх.синф.=Uc2=Uс1, действующие между входами усилителя и общей точкой («землей»).
Ослабление Uвх.синф. происходит только в том случае, если модули коэффициентов усиления по инвертирующему (вход 1) и неинвертирующему (вход 2) входами равны. Из формул (3.3) и (3.7) следует, что при одних и тех же элементах R1 и Rос, в инвертирующем и неинвертирующем усилителях │K –│¹K+.
Для их выравнивания в ДУ перед входом «+» включается делитель напряжения R3, R2 с коэффициентом деления R2/(R2+R3), обеспечивающий результирующий коэффициент усиления по входу2:
(3.11)
При обеспечении равенства
(3.12)
из (3.11) следует, что
.
В этом случае при подаче на входы 1, 2 сигналов Uc2, Uс1, напряжение на выходе усилителя равно
. (3.13)
Из (3.13) следует, что ДУ ослабляет синфазные сигналы
Uвх.синф.=Uc2=Uс1
так как при этом
Uвых=(Uвх синф К+*)/ Fs ус → 0,
где Fs ус - коэффициент ослабления синфазных сигналов дифференциальным усилителем на ОУ (сам ОУ имеет коэффициент ослабления синфазных сигналов Fs). В идеальном ДУ когда Fs ® ¥ и абсолютно точно выполняется (3.12), величина Fs ус ® ¥. На практике из-за ограниченности Fs реальных ОУ и неточности выполнения (3.12) наблюдается конечная величина Fs ус Для ее увеличения при заданном типе ОУ часто применяют вместо дискретных сопротивлений R1, R2, R3, Rос интегральные резистивные матрицы сопротивлений, выполненные на одной подложке по одному технологическому циклу. Значения сопротивлений резистивных матриц при действии дестабилизирующих факторов (температура, старение и др.) изменяются по одинаковому закону, при этом условие (3.12) выполняется с высокой точностью (с относительной погрешностью 10-3…10-4). Это позволяет достигнуть в ДУ на ОУ, работающих в широком диапазоне температур окружающей среды, значения Fs ус. , близкие к Fs. При использовании в ДУ дискретных сопротивлений R1, R2, R3, Rос увеличение Fs ус. может быть достигнуто только в узком температурном диапазоне путем подстройки сопротивлений для обеспечения (3.12), (3.13) с требуемой точностью.
Дифференциальные сигналы в ДУ, как следует из (3.13), усиливаются с коэффициентом усиления
(3.14)
3.4. Влияние напряжения и токов смещения на работу усилителя на ОУ
Наличие Uсм и Jсм приводит к возникновению в усилительном каскаде на этом ОУ выходного напряжения сдвига Uвых.сдв при нулевом входном сигнале. Амплитудные характеристики неинвертирующего усилителя при различных Uвых.сдв приведены на рис.3.8.
Рис.3.8.
Видно, что наличие Uвых.сдв ¹0 приводит к погрешности усиления полезных сигналов, а так же к изменению динамических диапазонов входных сигналов положительной и отрицательной полярности. Величина Uвых.сдв определяется параметрами ОУ и схемой его включения.
Порядок оценки Uвых.сдв в усилителях на ОУ.
1. В анализируемом усилителе определяют эквивалентное сопротивление R – по постоянному току между входом «–» ОУ и общей точкой («землей») и эквивалентное сопротивление R+ по постоянному току между входом «+» ОУ и общей точкой (R+ и R – определяют с учетом сопротивления Rс источников сигналов по постоянному току).
2. Рассчитывают напряжения, вызываемые Jсм1, Jсм2 на инвертирующем и неинвертирующем входах усилителя
U1=Jсм1 R –, U2=Jсм2 R+.
3. Рассчитывают коэффициенты усиления К+ и К – на постоянном токе.
4. Рассчитывают Uвых.сдв по формуле
Uвых.сдв = К+Uсм + К –U1 + К+U2 (3.15)
Например, для схемы инвертирующего усилителя (рис.3.2)
при Rc<<R1,
R –=R1Rос / (R1+Rос), R+=R2,
Uвых.сдв.» Rос[(Uсм+Jсм2R2)/R1 - Jсм1], (3.15а)
для схемы неинвертирующего усилителя
Uвых.сдв.» Rос[(Uсм+Jсм2Rс)/R1 - Jсм1], (3.15б)
3.5. Измерение напряжения и токов смещения ОУ
Измерение Uсм
Из формул (3.3), (3.7), (3.15) следует, что Uсм можно определить по выходному напряжению усилителя при R –=R+=0, то есть путем измерения Uвых. В схеме повторителя рис.3.9. при R –=0.
рис.3.9.
Uсм= Uвых (3.16)
R+=0
R –=0.
Измерение Jсм1 и Jсм2
При R+=0, R –¹0 (см. формулу (3.15)) Uвых= Uсм– Jсм1 R –, откуда
(3.17)
аналогично, при R –=0, R+¹0, Uвых= Uсм+ Jсм2 R+,
(3.18)
Определив Jсм1 и Jсм2 , рассчитывают Jсм и Jр по формулам (3.1) и (3.1а).
4.ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ
В состав лабораторной установки входят:
1) лабораторный макет;
2) лабораторный блок питания (типа ТЭС 13);
3) универсальный вольтметр (типа В7-15, В7-16).
Лабораторный макет содержит:
а) усилитель на ОУ (типа К140УД9) с коммутационными элементами, обеспечивающими набор схем инвертирующего усилителя, повторителя напряжения, не инвертирующего усилителя;
б) дифференциальный усилитель на ОУ с внешними сопротивлениями, выполненными на микросхемной резистивной матрице (типа 301НР1); дифференциальный усилитель включается специальным переключателем (Вкл) и расположен в правой нижней части лицевой панели лабораторного макета;