Система органов дыхания
Рефераты >> Биология >> Система органов дыхания

100% смеси газов имеют давление 760 мм рт. ст. 20,94% О2 X

Рассчитанное таким же образом парциальное давление СО2 составляет 0,2 мм рт. ст., N2 — 600,8 мм рт. ст.

Зная состав альвеолярного воздуха, можно рассчитать парциальное давление газов в легких. Парциальное давление О2 в альвеолах равно 102 мм рт. ст., СО2 — 40, N2 — 571 и водяных паров — 47 мм рт. ст.

В притекающей к капиллярам легких венозной крови напряжение О2 составляет 40, а СО2 — 47 мм рт. ст. (Азот в газообмене не участвует.) Животный организм не способен использовать азот воздуха. В 100 мл и артериальной, и венозной крови содержится 1 мл физически растворенного азота.)

Если над жидкостью находится смесь газов или две жидкости разделены проницаемой для газов перепонкой, то газы будут диффундировать от места большего давления к месту меньшего до тех пор, пока не установится динамическое равновесие. Механизм газообмена в живом организме объясняется законами диффузии.

Поскольку парциальное давление О2 в альвеолах больше, чем в венозной крови, то кислород диффундирует из альвеолы в капилляры. Напротив, напряжение СО2 больше в венозной крови, чем в альвеолярном воздухе, поэтому углекислый газ диффундирует в альвеолы. Условия для газообмена в легких настолько благоприятны, что, несмотря на то что время прохождения крови через капилляры легких составляет около 1 с, напряжение газов в артериальной крови, оттекающей от легких, таково, каким оно было бы и после длительного контакта, т. е. полностью соответствует парциальному давлению в альвеолярном воздухе.

Если вентиляция легких недостаточна и в альвеолах повышается содержание СО2, то уровень СО2 сейчас же повышается и в крови, что немедленно приводит к усилению дыхания. При тяжелом воспалении легких дыхание нарушается, наступает одышка, так как плазма крови просачивается в альвеолы и заполняет их, выключая дыхательную функцию большой части легких, поэтому больному дают дышать чистым кислородом.

Газообмен в тканях

В легких кровь из венозной превращается а артериальную, богатую О2 и бедную СО2. Артериальная кровь направляется к тканям, где в результате непрерывно идущих окислительных процессов потребляется О2 и образуется СО2. В тканях напряжение О2 близко к нулю, а напряжение СО2 около 60 мм рт. ст. Вследствие разности давления СО2 из ткани диффундирует в кровь, а О2 — в ткани. Кровь становится венозной и по венам поступает в легкие, где цикл обмена газов повторяется.

Перенес газов кровью

Человек в состоянии покоя в 1 мин потребляет в среднем 250 мл О2 и выделяет при этом 200 мл СО2. Газы очень слабо растворяются в жидкости: 100 мл крови могут физически растворить 0,3 мл О2, 2,7 мл СО2 и 1 мл N2. В крови имеется удивительное вещество — гемоглобин (Нb), которое способно химически связывать О2 и СО2 и, кроме того, поддерживать постоянную реакцию крови. В 100 мл артериальной крови содержится 20 мл О2, 52 мл СО2 и 1 мл N2. Как сказано выше, очень небольшая часть газов находится в состоянии простого физического растворения. Основное количество газов образует в крови непрочное химическое соединение, т. е. такое, которое легко распадается, диссоциирует при понижении давления газа над жидкостью.

Перенос кислорода. В эритроцитах находится пигмент крови — гемоглобин, содержащий железо. Одна молекула гемоглобина присоединяет четыре молекулы О2, при этом гемоглобин превращается в оксигемоглобин (НЬО2), а кровь из вишневой — венозной — становится ярко-алой — артериальной:

Hb + O2 ↔HbO2

Гемоглобин Оксигемоглобин

Эта реакция обратима. В легких гемоглобин насыщается кислородом и превращается в НЬО2, в тканях кислород освобождается. Ход реакции зависит от напряжения кислорода в среде, окружающей капилляры. На ход реакции влияет напряжение СО2. Если в тканях увеличивается образование СО2, то ускоряется расщепление оксигемоглобина. В капиллярах легких снижается напряжение СО2, так как газ переходит в альвеолы. Это способствует превращению гемоглобина в НЬО2. Каждый грамм гемоглобина способен связать 1,34 мл О2. В 100 мл крови содержится в норме около 15 г гемоглобина. Следовательно, кислородная емкость крови, т. е. то максимальное количество О2, которое может поглотить 100 мл крови, равна 20,1 мл.

Гемоглобин способен соединяться не только с О2, но и с другими газами. Особое значение имеет его способность химически связывать окись углерода, или угарный газ,— СО, продукт неполного сгорания угля или жидкого топлива. С ним гемоглобин образует соединение, в 150—300 раз более прочное, чем с О2. Оно способно диссоциировать, но крайне медленно. В результате даже при ничтожном содержании СО в воздухе гемоглобин соединяется не с О2, а с СО и превращается в карбоксигемоглобин (НbСО), при этом транспорт О2 к клеткам прекращается. Если своевременно не принять меры (вынести человека на свежий воздух, в тяжелом случае переливание крови), то человек погибнет.

Перенос углекислого газа. Образовавшийся в тканях СО2 вследствие разности напряжения диффундирует в плазму крови, а из нее — в эритроциты. В эритроцитах примерно 10% СО2 соединяется с гемоглобином и образует непрочное химическое соединение — карбгемоглобин. Остальная часть соединяется с водой и превращается в угольную кислоту:

СО2 + H2О↔Н2СО3.

Эта реакция ускоряется в 20 000 раз особым ферментом — карбоангидразой, находящимся в эритроцитах. Реакция обратимая. В тканевых капиллярах, где напряжение СО2 высокое, карбоангидраза способствует синтезу угольной кислоты, химическому связыванию СО2 и идет слева направо. В легочных капиллярах, где давление СО2 сравнительно низкое, реакция идет справа налево, образуются вода и СО2, которая диффундирует в альвеолярный воздух. Угольная кислота в тканевых капиллярах реагирует с ионами натрия и калия и образует бикарбонаты (NaHCO3, KHCO3).

Таким образом, СО2 транспортируется к легким в физически растворенном виде и в непрочном химическом соединении, в виде карбогемоглобина, угольной кислоты и бикарбонатов натрия и калия. Две трети его находится в плазме и треть — в эритроцитах.

Дыхание в особых условиях

Под особыми условиями понимают дыхание при пониженном или повышенном атмосферном давлении.

Повышенное давление. Создается повышенное давление в специальном приспособлении, в котором человек работает под водой. (Каждые 10 м глубины создают давление в 1 атм.) Например, при строительстве мостов, молов, под воду опускают специальный колокол — кессон, шахтная труба которого расположена над поверхностью воды и сообщается с декомпрессионной камерой. Вся система герметически закрыта. Чтобы вода не поступала под колокол, в кессоне создается повышенное давление. Если колокол опущен на глубину 100 м, то давление должно быть не менее 11 атм. При этом в крови и тканях работающих людей растворяется большое количество газов, из которых особенно опасным является азот. При быстром переходе от повышенного давления к нормальному происходит выделение газов и в жидкостях и тканях организма образуется большое количество газовых пузырьков, так же как при откупоривании бутылки с газированной водой. Пузырьки кислорода быстро поглощаются тканями. Газообразный азот не используется организмом. Образовавшиеся пузырьки азота закупоривают капилляры, что нарушает кровообращение. При постепенном снижении давления в декомпрессионной камере азот выводится через легкие наружу. Когда человек поднимается из колокола на поверхность, то в надводной шлюзовой (декомпрессионной) камере в течение нескольких часов медленно снижается давление.


Страница: