Воспроизводство звука
Рефераты >> Радиоэлектроника >> Воспроизводство звука

Головки звукоснимателей

(на примере Blue Point № 2)

“Sumiko Blue Point № 2” смонтирована в обычном пластмассовом корпусе, ее подвижная система оснащена прочным стандартным иглодержателем и надежно защищена от случайных механических повреждений. Корпус головки — одна из серьезнейших помех качеству звука. Вследствие блуждания и переотражения звуковых волн вблизи электромеханического преобразователя, в звуковом тракте господствуют раздражающие слух искажения, которые существенно превосходят электрическую нелинейность усилителей. Если изготавливать корпуса из мягких материалов с большими внутренними потерями — высоким фактором демпфирования,— то звучание потеряет детальность, станет вялым, как говорится, “замыленным”. В очень дорогих головках удается найти компромисс между качеством звука и материалом корпуса. Это либо сложная технология формовки вспененных компаундов, либо кропотливая ручная обработка специально отобранной древесины. В последние годы появилась тенденция к отказу от применения компенсатора скатывающей силы (antiskating). Без антискейтинга качество звучания может быть лучше, но при этом произойдет более быстрый и асимметричный износ иглы. Фирма “Sumiko” рекомендует компромисс: устанавливать антискейтинг на половину значения прижимной силы. Например, при прижимной силе 2 г, величина антискейтинга должна быть равна 1 г, а в крайнем случае не превышать 1,5 г. Tехнические параметры по данным производителя

Головки звукоснимателей Sumiko “Blue Point № 2” ($299)

Иглодержатель Игла Механоэлектрический преобразователь Механический демпфер Выходное напряжение Разделение каналов на частоте 1 кГц Разбаланс каналов на частоте 1 кГц Внутренний импеданс Рекомендуемый импеданс нагрузки Диапазон воспроизводимых частот Допустимый диапазон прижимной силы Оптимальная прижимная сила Динамическая податливость преобразователя Масса головки

Стержень из бора продольной структуры Эллиптическая, радиусы 0,0076 х 0,0177 мм Подвижная катушка (МС) Синтетическая резина 2,5 мВ 32 дБ 0,5 дБ 135 Ом 47 кОм 15–35000 Гц 1,6–2,0 г 1,8 г 15 х 10–6 см/дин 6,3 г

Воспроизведение звука с фонографических цилиндров Эдисона

Институт проблем регистрации информации НАН Украины предложил и реализовал принципиально новый метод высококачественного воспроизведения звука с фонографических цилиндров Эдисона. Предложенный цифровой оптико-механический метод с интерферометрической схемой измерения позволяет обеспечить физическую сохранность восковых цилиндров и получить высококачественное воспроизведение звука.

Одна из главных характерных особенностей разработанного и исследованного метода состоит в том, что профиль звуковой дорожки в цифровой форме снимается с цилиндра и вводится в компьютер и после соответствующей обработки преобразуется в звук. Такой метод имеет ряд преимуществ. Во-первых, запись профиля звуковой дорожки может быть выполнена при скоростях в 10-50 раз ниже, чем скорость звуковой записи. Значительное уменьшение скорости вращения цилиндра позволяет резко уменьшить динамическую нагрузку на поверхность цилиндра, что очень важно с точки зрения его сохранения. При уменьшении скорости вращения цилиндра до 3-6 оборотов в минуту динамическая нагрузка на поверхность цилиндра в системе воспроизведения может быть уменьшена в 300-500 раз по сравнению с пьезоэлектрическим методом.

Во-вторых, метод позволяет значительно улучшить качество воспроизведения звука. Анализ процесса воспроизведения звука с цилиндров Эдисона показал, что один из основных шумов - шум, возникающий при контакте иглы звукоснимателя с частицами пыли и царапинами. Размер пылинок (3-10 мкм) и большинства царапин (5-10 мкм) намного меньше отпечатка звуковой волны на поверхности цилиндра. При взаимодействии иглы с пылинками и микротрещинами при традиционных методах считывания возникает импульсная шумовая помеха, имеющая широкий спектральный диапазон и трудноотделимая от полезного сигнала. Чтобы уменьшать шум, произведенный пылинками, трещинами и другими явными дефектами, предлагается профиль, снятый от поверхности звуковой дорожки, до преобразования его в звук аппроксимировать более гладкой кривой, исключая явные выбросы, связанные с пылью, трещинами и т. д.

В-третьих, компьютерная обработка и преобразование профиля дорожки в звук исключают необходимость повторения процессов воспроизведения с целью выбора оптимальной скорости вращения, соответствующей той, на которой была выполнена запись. Это значительно уменьшает вероятность повреждения цилиндров при повторных воспроизведениях.

Технической реализацией предложенного метода является цифровая оптико-механическая интерферометрическая система неразрушающего измерения профиля звуковой дорожки воскового цилиндра, обобщенная функциональная схема которой приведена на рис. 1. Система состоит из трех основных подсистем:

  • интерферометрической измерительной подсистемы;
  • подсистемы вращения воскового цилиндра;
  • подсистемы линейного осевого перемещения воскового цилиндра.

Рис. 1. Функциональная схема системы.

Измерительный узел представляет собой лазерный интерферометр, в основу которого взята классическая схема Майкельсона (Рис.2.). Профиль звуковой дорожки цилиндра отслеживается при помощи зонда эллиптической формы. С зондом жестко связан оптический элемент измерительного плеча интерферометра (уголковый отражатель), перемещение которого, соответствующее профилю звуковой дорожки, измеряется с дискретностью не более 0,1 мкм и заносится в ЭВМ. Уголковый отражатель с зондом закреплен на одном конце рычага (тонарма). Другой конец тонарма связан с датчиком положения. Для получения звука производится вычисление скорости измерения профиля поверхности и его компьютерная запись. При помощи компьютера программировалась скорость воспроизведения, соответствующая скорости вращения при записи. Для большинства цилиндров неизвестна точная скорость вращения, при которой производилась запись. Компьютерная обработка после записи профиля поверхности позволяет выбрать оптимальную скорость воспроизведения при одном проходе звукоснимателя. С целью обеспечения стабильности и точности интерферометрической измерительной системы разработанная установка для воспроизведения звука с цилиндров Эдисона выполнена неподвижной. Съем профиля звуковой дорожки (сканирование цилиндра) осуществляется посредством синхронных вращений (система вращения) и осевого перемещения цилиндра относительно неподвижной интерферометрической системы (система позиционирования). Для минимизации внешних шумов перечисленные выше системы установлены на фундаменте массой 120 тонн. Приводы вращения и линейного перемещения выполнены аэростатическими, что позволило избежать шумов подшипников.


Страница: