Волоконно-оптические системыРефераты >> Радиоэлектроника >> Волоконно-оптические системы
Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь малые габариты, что позволяет выполнять передающие оптические модули в интегральном исполнении. Кроме того, для полупроводниковых источников света характерны невысокая стоимость и простота обеспечения модуляции.
В качестве приемников света в волоконно-оптических систем передачи на ГТС применяются лавинные фотодиоды, достоинством которых является высокая чувствительность. Однако, при использовании лавинных фотодиодов нужна жесткая стабилизация напряжения источника питания и температурная стабилизация, поскольку коэффициент лавинного умножения, а следовательно фототок и чувствительность ЛФД, сильно зависит от напряжения и температуры.
Передача оптических сигналов в ВОСП на ГТС осуществляется в многомодовом режиме, поскольку соединительные линии относительно коротки и дисперсионные процессы в оптических волокнах незначительны. На сегодняшний день для городской телефонной сети используются кабели марки ОК имеющие четыре или восемь ступенчатых многомодовых волокон.
В ближайшие годы потребность в увеличении числа каналов будет расти. Наиболее доступным способом увеличения пропускной способности ВОСП в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Сегодня на городских сетях связи находят применение одноволконные ВОСП с оптическими разветвителями и со спектральным уплотнением.
2 Волоконно-оптические датчики
Первые попытки создания датчиков на основе оптических волокон можно отнести к середине 1970-х годов. Публикации о более или менее приемлемых разработках и экспериментальных образцах подобных датчиков появились во второй половине 1970-х годов. Однако считается, что этот тип датчиков сформировался как одно из направлений техники только в начале 1980-х годов. Тогда же появился и термин "волоконно-оптические датчики" (optical fiber sensors). Таким образом, волоконно-оптические датчики — очень молодая область техники.
2.1 От электрических измерений к электронным
Конец X IX века можно считать периодом становления метрологии в ее общем виде. К тому времени произошла определенная систематизация в области электротехники на основе теории электромагнетизма и цепей переменного тока. До этого физические величины измерялись главным образом механическими средствами, а сами механические измерения распространены были незначительно. Электрические же измерения ограничивались едва ли не исключительно только электростатическими. Можно сказать, что метрология, развиваясь по мере прогресса электротехники, с конца XIX века стала как бы ее родной сестрой.
Рассмотрим этапы и успехи этого развития. В течение нескольких десятков лет, вплоть до второй мировой войны, получили распространение электроизмерительные приборы, принцип работы которых основан на силах взаимодействия электрического тока и магнитного поля (закон Био — Совара). Тогда же эти приборы внедрялись в быстро развивающуюся промышленность. Особенность периода в том, что наука и техника, причастные к электроизмерительным приборам, становятся ядром метрологии и измерительной индустрии.
После второй мировой войны значительные успехи в развитии электроники привели к громадным переменам в метрологии. В пятидесятых годах появились осциллографы, содержащие от нескольких десятков до сотни и более электронных ламп и обладающие весьма высокими функциональными возможностями, а также целый ряд подобных устройств, которые стали широко применяться в сфере производства и научных исследований. Так наступила эра электронных измерений. Сегодня, по прошествии 30 лет, значительно изменилась элементная база измерительных приборов. От электронных ламп перешли к транзисторам, интегральным схемам (ИС), большим ИС (БИС). Таким образом, и сегодня электроника является основой измерительной техники.
2.2 От аналоговых измерений к цифровым
Однако между электронными измерениями, которые производились в 1950-e годы, и электронными измерениями 1980-х годов большая разница. Суть ее заключается в том, что во многие измерительные приборы введена цифровая техника.
Обычно электронный измерительный прибор имеет структуру, подобную изображенной на рис. 1. Здесь датчик в случае измерения электрической величины (электрический ток или напряжение) особой роли не играет, и довольно часто выходным устройством такого измерителя является индикатор. Однако при использовании подобного прибора в какой-либо измерительной системе сплошь и рядом приходится сталкиваться с необходимостью обработки сигнала различными электронными схемами. Внедрение цифровой измерительной техники подразумевает в идеале, что цифровой сигнал поступает непосредственно от чувствительного элемента датчика. Но пока это скорее редкость, чем правило. Чаще же всего этот сигнал имеет аналоговую форму, и для него на входе блока обработки данных установлен аналого-цифровой преобразователь (АЦП). Цифровая же техника используется главным образом в блоке обработки данных и в выходном устройстве (индикаторе) или в одном из них.
Рис. 2.1 - Типовая структура электронного измерителя |
Основное преимущество использования цифровой техники в процессе обработки данных — это сравнительно простая реализация операций высокого уровня, которые трудно осуществимы с помощью аналоговых устройств. К таким операциям относятся подавление шумов, усреднение, нелинейная обработка, интегральные преобразования и др. При этом функциональная нагрузка на чувствительный элемент датчика уменьшается и снижаются требования к характеристикам элемента. Кроме того, благодаря цифровой обработке становится возможным измерение весьма малых величин.
2.3 Цифризация и волоконно-оптические датчики
Важно отметить, что одним из этапов развития волоконно-оптических датчиков было функциональное расширение операций, выполняемых в блоке обработки данных датчика, путем их цифризации и, что особенно существенно, упрощение операций нелинейного типа. Ведь в волоконно-оптических датчиках линейность выходного сигнала относительно измеряемой физической величины довольно часто неудовлетворительна. Благодаря же цифризации обработки эта проблема теперь частично или полностью решается.
Нечего и говорить, что важный стимул появления волоконно-оптических датчиков — создание самих оптических волокон, о которых будет рассказано ниже, а также взрывообразное развитие оптической электроники и волоконно-оптической техники связи.
2.4 Становление оптоэлектроники и появление оптических волокон.
2.4.1 Лазеры и становление оптоэлектроники
Оптоэлектроника — это новая область науки и техники, которая появилась на стыке оптики и электроники. Следует заметить, что в развитии радиотехники с самого начала ХХ века постоянно прослеживалась тенденция освоения электромагнитных волн все более высокой частоты. Вытекающее из этого факта предположение, что однажды радиотехника и электроника достигнут оптического диапазона волн, становится все более и более достоверным, начиная с 1950-х годов. Годом возникновения оптоэлектроники можно считать 1955-й, когда Е. Лоебнер (Loеbner Е. Е. Optoelectronic devices and networks//Proc. 1ЕЕЕ. 1955. V. 43. N 12. Р. 1897 — 1906) описал потенциальные параметры различных оптоэлектронных устройств связи, нынче называемых оптронами, т. е. когда были обсуждены основные характеристики соединения оптического и электронного устройств.