Психофизиология пространственного зрительного внимания у человека
Человек обладает совершенным зрением, и оно является важнейшим анализатором для познания окружающего мира. Зрение человека имеет высокое разрешение, оно цветное (приматы – трихроматы). Наш зрительный мир объемен. При движениях головы, ходьбе, беге, прыжках окружающий зрительный мир остается константным несмотря на то, что сетчаточное изображение испытывает сильные смещения. Из анатомии сетчатки известно, что колбочки – фоторецепторы дневного и цветного зрения – сосредоточены в желтом пятне (fovea), которое занимает на сетчатке всего около 2°. Именно они обеспечивают высокое разрешение зрения, восприятие цвета, предметное зрение. Зрение в сумерках, когда работают только палочки, занимающие остальное пространство сетчатки, чрезвычайно несовершенно – воспринимаются только контуры предметов (ночью все кошки серые). Какие нейрофизиологические механизмы обеспечивают совершенство нашего зрения кроме самих фоторецепторов? Чтобы разобраться в этом, обратимся к эволюции органов зрения в ряду позвоночных животных.
Степень развития зрения полностью определяется необходимостью животного ориентироваться во внешней среде. У рыб уже хорошо развито зрение. Сетчатка рыб в основных чертах не отличается от сетчатки млекопитающих. Аккомодация (наводка на резкость), правда, осуществляется с помощью передвижения круглого хрусталика ближе-дальше от сетчатки с помощью серповидноклеточного отростка, а не изменением кривизны хрусталика, как у наземных позвоночных. Уже в условиях однородной водной среды у рыб возникла необходимость специального механизма стабилизации изображения на сетчатке при движении животного. Голова рыбы непосредственно соединена с туловищем, и поэтому положение глаз в орбитах зависит от положения туловища. Движение глаз в орбитах определяется двумя рефлексами: вестибулоокулярным и оптомоторным.
Вестибулоокулярный рефлекс запускается с вестибулярных рецепторов, при этом глаза в орбитах противовращаются относительно направления вращения всего туловища. Благодаря этому рефлексу абсолютное положение зрительных осей в пространстве, окружающем животное, стабилизируется во время движения животного. Этот рефлекс для своей работы не требует зрительных стимулов. В отличие от этого оптомоторный рефлекс для своего запуска требует структурированного зрительного фона. В лаборатории оптомоторный рефлекс легко получить поместив животное в центре вращающегося цилиндра, стенки которого раскрашены черно-белыми полосами. Эти два рефлекса проявляются внешне одинаково: вестибулоокулярный рефлекс противовращает глаза в орбитах при вращении головы, сохраняя неизменным положение зрительных осей глаз в пространстве, а оптомоторный рефлекс также противовращает глаза в орбитах, но стабилизирует зрительные оси относительно структурированного зрительного поля зрения. Назначение обоих рефлексов – предотвратить сползание изображения при вращении животного или движении зрительного мира относительно животного.
Трудности в решении задачи стабилизации сетчаточного изображения многократно возрастают у наземных млекопитающих. Голова этих животных помещается на подвижной шее. Это дает дополнительные возможности исследовать окружающий мир, но в то же время резко усложняет проблему стабилизации сетчаточного изображения. Трудности стабилизации сетчаточного изображения возрастают, так как эти животные способны к быстрым движениям (бег, прыжки и пр.).
Эволюция сетчатки высших млекопитающих пошла по пути дифференцирования сетчатки на зону с высоким разрешением (area centralis – у копытных, хищных и некоторых других и fovea – у приматов), которая занимает, например, у человека около 2°. Остальная часть сетчатки, как уже упоминалось, занята палочками – рецепторами сумеречного зрения. В группе животных с area centralis (их условно можно назвать афовеальными) зрительная задача ограничивается прослеживанием движущихся объектов преимущественно по горизонтальному меридиану, поэтому движения глаз в орбитах ограничиваются плавными прослеживающими движениями. В группе фовеальных животных (в отряде приматов) возникла принципиально другая зрительная задача – активное исследование окружающего мира. Как уже говорилось, природа создала сетчатку приматов с fovea, в области которой находится высокая плотность колбочек – рецепторов дневного и цветового зрения. Для решения задачи исследования окружающего мира необходимо было создание глазодвигательного механизма активного помещения информативно значимых деталей сетчаточных изображений объектов на fovea (фовеация).
У человека наблюдаются все перечисленные выше рефлексы, при помощи которых осуществляются стабилизация изображения на сетчатке и рассматривание окружающего мира. Перечислим эти рефлексы. Вестибулоокулярный рефлекс легко получить вращением человека в специальном кресле, которое вращают вокруг вертикальной оси. Регистрация движений глазных яблок показывает, что при вращении человека в затемненной комнате глаза в орбитах испытывают колебательные движения (вестибулярный нистагм): медленная фаза движения в направлении вращения, а быстрая – в противоположную сторону. Например, этот рефлекс участвует в установке взора. Если предъявить зрительный объект на периферии зрительного поля, то человек совершает вначале скачкообразное движение (саккаду) глазами и тем самым помещает изображение на fovea. Но глаза в орбитах занимают в этом случае крайнее положение. Поэтому голова начинает поворачиваться в направлении зрительного объекта. Глаза при этом противовращаются в орбитах, удерживая изображение объекта на fovea. Благодаря всем этим движениям (глаз в орбитах и головы) положение зрительной оси в пространстве (мнимая линия, соединяющая fovea и зрительный объект) остается неизменным. Установка взора продолжается до тех пор, пока глаза в орбитах не занимают центрального положения. Оптомоторный рефлекс получают при движении перед глазами испытуемого чередующихся черно-белых полос. В этом случае движения глаз в орбитах не отличаются от вестибулоокулярного рефлекса – медленная фаза нистагма в направлении движения фона, а быстрая – в противоположную сторону. Рефлекс прослеживания хорошо проявляется при неожиданном появлении объекта в области бокового зрения. В этом случае глаз скачком приводит этот объект на центр сетчатки и затем осуществляются плавные прослеживающие движения глаз с участием головы. Совершенно уникальные движения глаз, которые в полной мере развиты только у приматов, включая человека, – это саккады (от фр. – хлопок паруса).
Современная нейрофизиология установила, что в производстве этой формы движения глаз задействован стволовой нейронный генератор. На сагиттальном срезе мозгового ствола головного мозга обезьяны показано местоположение области, ответственной за производство саккад, – она локализована в парамедианной области ретикулярной формации моста. Эта область содержит несколько видов нейронов. Управление этих нейронов производится из верхних двухолмий, а также эта область получает прямые входы от фронтального глазодвигательного поля коры больших полушарий. Благодаря последней связи управление саккадой может быть произвольным. Саккадными движениями глаз человек способен активно исследовать окружающий зрительный мир. Видно, что у больного человека нарушена произвольная способность управлять положением глаз и отчет таких больных не соответствует предъявленной картине.