Пластичность мозга
Отступление от правил
Обратимся теперь ко второму сценарию: мозг цел, но повреждены периферические органы, а конкретнее — слух или зрение. Именно в такой ситуации оказываются люди, рождённые слепыми или глухими. Давно замечено, что слепые быстрее дискриминируют слуховую информацию и воспринимают речь, чем зрячие. Когда слепых от рождения (и утративших зрение в раннем детстве) исследовали методом позитронно-эмисионной томографии мозга в то время, как они читали тексты, набранные брайлевским шрифтом, оказалось, что при чтении пальцами у них активируется не только соматосенсорная кора, ответственная за тактильную чувствительность, но и зрительная кора. Почему это происходит? Ведь в зрительную кору у слепых не поступает информация от зрительных рецепторов! Аналогичные результаты были получены при изучении мозга глухих: они воспринимали используемый ими для общения знаковый язык (жестикуляцию) в том числе и слуховой корой.
Рис. 3. Операция подсадки зрительного тракта к медиальному коленчатому телу таламуса. Слева показан нормальный ход нервных путей от глаз и ушей, справа — их расположение после операции. (Нервные пути, несущие слуховую информацию, отсекали от медиальных коленчатых тел и на их места подсаживали окончания зрительных нервов, отделённые от латеральных коленчатых тел таламуса. Было уничтожено также нижнее двухолмие в среднем мозге, где переключается часть нервных путей от уха в слуховую кору (не показано на схеме): 1 — зрительный тракт, 2 — слуховой тракт, 3 — латеральные коленчатые тела таламуса, 4 — медиальные коленчатые тела таламуса, 5 — таламокортикальные пути к зрительной коре, 6 — таламокортикальные пути к слуховой коре. |
Как уже отмечалось, сенсорные зоны не связаны в коре напрямую друг с другом, а взаимодействуют лишь с ассоциативными областями. Можно предположить, что переадресация соматосенсорной информации у слепых в зрительную кору и зрительной информации у глухих — в слуховую происходит с участием подкорковых структур. Такая переадресация представляется экономичной. При передаче информации от сенсорного органа в сенсорную область коры сигнал несколько раз переключается с одного нейрона на другой в подкорковых образованиях мозга. Одно из таких переключений происходит в таламусе (зрительном бугре) промежуточного мозга. Пункты же переключения нервных путей от разных сенсорных органов близко соседствуют (рис. 3, слева).
При повреждении какого-либо сенсорного органа (или идущего от него нервного пути) его пункт переключения оккупируют нервные пути другого сенсорного органа. Поэтому сенсорные области коры, оказавшиеся отрезанными от обычных источников информации, вовлекаются в работу за счёт переадресации им иной информации. Но что происходит тогда с самими нейронами сенсорной коры, обрабатывающими чужую для них информацию?
Исследователи из Массачусетсского технологического института в США Джитендра Шарма, Алессандра Ангелуччи и Мриганка Сур брали хорьков в возрасте одного дня и делали зверькам хирургическую операцию: подсаживали оба зрительных нерва к таламокортикальным путям, ведущим в слуховую сенсорную кору (рис. 3). Целью эксперимента было выяснить, преобразуется ли слуховая кора структурно и функционально при передаче ей зрительной информации. (Напомним ещё раз, что для каждого типа коры характерна особая архитектура нейронов.) И в самом деле, это произошло: слуховая кора морфологически и функционально стала похожа на зрительную!
Иначе поступили исследователи Дайана Канн и Ли Крубитцер из Калифорнийского университета. Опоссумам на четвёртый день после рождения удалили оба глаза и через 8–12 месяцев у повзрослевших животных изучали первичные сенсорные области коры и прилегающую к ним ассоциативную зону. Как и ожидалось, у всех ослеплённых животных реорганизовалась зрительная кора: она сильно уменьшилась в размере. Зато, к удивлению исследователей, непосредственно к зрительной коре прилегала структурно новая область X. Как зрительная кора, так и область X содержали нейроны, воспринимавшие слуховую, соматосенсорную или и ту и другую информацию. В зрительной коре оставалось ничтожное число участков, не воспринимавших ни ту, ни другую сенсорную модальность — то есть сохранивших, вероятно, своё первоначальное назначение: восприятие зрительной информации.
Неожиданным оказалось то, что реорганизация коры затронула не только зрительную кору, но и соматосенсорную, и слуховую. У одного из животных соматосенсорная кора содержала нейроны, реагировавшие или на слуховую, или на соматосенсорную, или на обе модальности, а нейроны слуховой коры реагировали либо на слуховые сигналы, либо на слуховые и соматосенсорные. При нормальном развитии мозга такое смешение сенсорных модальностей отмечается только в ассоциативных областях более высокого порядка, но не в первичных сенсорных областях.
Развитие мозга определяется двумя факторами: внутренним — генетической программой и внешним — информацией, поступающей извне. Вплоть до последнего времени оценка влияния внешнего фактора была трудноразрешимой экспериментальной задачей. Исследования, о которых мы только что рассказали, позволили установить, насколько важен характер поступающей в мозг информации для структурно-функционального становления коры. Они углубили наши представления о пластичности мозга.
Почему мозг регенерирует плохо
Цель регенерационной биологии и медицины — при повреждении органа блокировать заживление рубцеванием и выявить возможности перепрограммирования повреждённого органа на восстановление структуры и функции. Эта задача предполагает восстановление в повреждённом органе состояния, характерного для эмбриогенеза, и присутствие в нём так называемых стволовых клеток, способных размножаться и дифференцироваться в различные типы клеток.
В тканях взрослого организма клетки часто обладают весьма ограниченной способностью к делению и жёстко придерживаются „специализации“: клетки эпителия не могут превращаться в клетки мышечного волокна и наоборот. Однако накопившиеся к настоящему времени данные позволяют с уверенностью утверждать, что практически во всех органах млекопитающих клетки обновляются. Но скорость обновления различна. Регенерация клеток крови и эпителия кишечника, рост волос и ногтей идут в постоянном темпе на протяжении всей жизни человека. Замечательной регенерационной способностью обладают печень, кожа или кости, причём регенерация требует участия большого числа регуляторных молекул различного происхождения. Иначе говоря, гомеостаз (равновесие) этих органов находится под системным надзором, так что их способность к регенерации пробуждается каждый раз, когда какое-либо повреждение нарушает равновесие.
Обновляются, хоть и медленно, мышечные клетки сердца: нетрудно подсчитать, что за время человеческой жизни клеточный состав сердца хотя бы раз обновляется полностью. Более того, обнаружена линия мышей, у которых практически полностью регенерирует сердце, поражённое инфарктом. Каковы же перспективы регенерационной терапии мозга?