Пластиды и их пигменты. Выделительные системы растений
I.2 Фотосинтез, необходимые для него условия
Фотосинтез у зеленых растений – это процесс преобразования света в химическую энергию органических соединений, синтезируемых из диоксида углерода и воды. Процесс фотосинтеза представляет собой цепь окислительно-восстановительных реакций, совокупность которых подразделяют на две фазы – световую и темновую.
1. Световая фаза. Для этой фазы характерно то, что энергия солнечной радиации, поглощенная пигментами системы хлоропластов, преобразуется в электрохимическую.
При действии света на хлоропласт начинается электронный поток по системе переносчиков – сложных органических соединений, встроенных в мембраны тилакоидов. С переносом электронов по ЭТЦ сопряжено активное поступление протонов через тилакоидную мембрану из стромы внутрь тилакоида. В тилакоидном пространстве происходит увеличение концентрации протонов за счет расщепления молекул воды и в результате окисления электронного переносчика пластохинона на внутренней стороне мембраны. Когда протоны идут обратно по градиенту из тилакоидного пространства в строму, на наружной поверхности тилакоида с участием фермента АТФ-синтетазы из АДФ и фосфорной кислоты синтезируется АТФ, т. е. происходит фотосинтетическое фосфореилирование с запасанием энергии в АТФ, которая затем переходит в строму хлоропласта.
Заканчивается передача электронов следующим образом. Достигнув внешней поверхности мембраны тилакоида, пара электронов следует с ионом водорода, находящимся в строме. Оба электрона и ион водорода присоеденяются к молекуле переносчика водорода – НАДФ+ (никатиномидадениндинуклетидфосфат), который при этом переходит в свою востановленную форму
НАДФ•Н+Н+:
НАДФ++2Н++2е-→НАДФ•Н+Н+
Следовательно активированные световой энергией электроны используются на присоедининие атома водорода к его переносчику, т. е. на восстановление НАДФ+ в НАДФ•Н+Н+, который с наружной поверхности фотосинтетической мембраны переходит в строму.
В молекулах хлорофилла, утративших свои электроны, образовавшиеся электронные «дырки» действуют как сильный окислитель и отрывают электроны от молекул воды. Через ряд переносчиков эти электроны передаются на молекулу хлорофилла и заполняют «дырку». Внутри тилакоида происходит фотоокислние (фотолиз) воды, в результате которого выделяется свободный кислород, а также накапливаются ионы водорода
2Н2О→4Н++4е-+О2
Таким образом, во время световой фазы фотосинтеза происходят три процесса: образование кислорода вследствие разложения воды, синтез АТФ и образование атомов водорода в форме НАДФ•Н2. Кислород диффундирует в атмосферу, а АТФ и НАДФ•Н2 транспортируются в матрикс пластид и участвуют в процессе темновой фазы.
2.Темновая фаза фотосинтеза протекает в матриксе хлоропласта как на свету, так и в темноте и представляет собой ряд последовательных преобразований СО2, поступаещего из воздуха. Осуществляются реакции темновой фазы за счет энергии АТФ и НАДФ•Н2 и использовании имеющихся в пластидах пятиуглеродных сахаров, один из которых – рибулозодифосфат – является акцептором СО2. Ферменты связывают пятиуглеродный сахар с углекислым газом воздуха. При этом образуются соединения которые последовательно восстанавливаются до шестиуглеродной молекулы глюкозы.
Суммарная реакция фотосинтеза
6СО2+6Н2 энергия света С6Н12О6+6О2
хлорофилл
В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединений – аминокислоты, глицерин и жирные кислоты. Таким образом, благодоря фотосинтезу растительные, а точнее – хлорофиллсодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.
I.3 Деление клетки
Описано три способа деления эукариотических клеток: амитоз (прямое деление), митоз (непрямое деление) и мейоз (редукционное деление).
Амитоз – относительно редкий способ деления клетки. При амитозе интерфазное ядро делится путем перетяжки, равномерное распределение наследственного материала не обеспечивается. Нередко ядро делится без последующего разделения цитоплазмы и образуются двухъядерные клетки. Клетка, претерпевшая амитоз, в дальнейшем не способна вступать в нормальный митотический цикл. Поэтому амитоз встречается, как правило, в клетках и тканях, обреченных на гибель.
Митоз. Митоз, или непрямое деление, - основной способ деления эукариотических клеток. Митоз – это деление ядра, которое приводит к образованию двух дочерних ядер, в каждом из которых имеется точно такой же набор хромосом, что и был в родительском ядре.
В непрерывном процессе митотического деления различают четыре фазы: профазу, метафазу, анафазу и телофазу.
Профаза – самая длительная фаза митоза, когда происходит перестройка всей структуры ядра для деления. В профазе происходит укорочение и утолщение хромосом вследствие их спирализации. В это время хромосомы двойные (удвоение происходит в S-периоде интерфазы), состоят из двух хроматид, связанных между собой в области первичной перетяжки осбой структурой – цетромерой. Одновременно с утолщением хромосом исчезает ядрышко и фрагментируется (распадается на отдельные цистерны) ядерная оболочка. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме. Начинается формирование ахромативного веретена – веретена деления, которое представляет систему нитей, идущих от полюсов клетки. Нити веретена имеют диаметр около 25нм. Это пучки микротрубочек, состоящих из субъедениц белка тубулина. Микротрубочки начинают формироваться со стороны центриолей либо со стороны хромосом (в клетках растений).
Метафаза. В метафазе завершается образование веретена деления, которое состоит из микротрубочек двух типов: хромосомных, которые связываются с центромерами хромосом, и ценросомных (полюсных), которые тянутся от полюса к полюсу клетки. Каждая двойная хромосома прикрепляется к микротрубочкам веретена деления. Хромосомы как бы выталкиваются микротрубочками в область экватора клетки, т.е. располагаются на равном расстоянии от полюсов. Они лежат в одной плоскости и образуют так называемую экваториальную, или метафазную пластинку. В метафазе отчетливо видно двойное строение хромосом, соединенных только в области центромеры. Именно в этот период легко подсчитать число хромосом, изучать их морфологические особенности.
Анафаза начинается делением центромеры. Каждая из хроматид одной хромосомы становится самостоятельной хромосомой. Сокращение тянущих нитей ахроматинового веретена увлекает их к противоположным полюсам клетки. В результате у каждого из полюсов клетки оказывается столько же хромосом, сколько было их в материнской клетке, причем набор их одинаков.
Телофаза – последняя фаза митоза. Хромосомы деспирализуются, становятся плохо заметными. На каждом из полюсов вокруг хромосом воссоздается ядерная оболочка. Формируются ядрышки, веретено деления исчезает. В образовавшихся ядрах каждая хромосома состоит теперь всего из одной хроматиды, а не из двух.