Плавательный пузырь, количество крови, щитовидная железа у рыб
Рефлекторное влияние плавательного пузыря.
Плавательный пузырь является органом, связанным рефлекторно с мышцами тела и влияющим на тонус и координированные движения мышц. Напряжение газов в плавательном пузыре создает определенные импульсы к поведению рыбы. Так, например, если наполнить плавательный пузырь морского окуня индифферентной жидкостью под повышенным давлением так, чтобы стенки пузыря несколько растянулись, рыба плавает у дна; если же давление жидкости на стенке понизить, то рыба стремится вверх, вследствие компенсаторных движений плавников. Одновременно с различными в том и другом случае компенсаторными движениями плавников происходит соответственно или резорбция или секреция газа в плавательном пузыре.
Эти функции плавательного пузыря были подробно изучены в работах, вышедших из лаборатории, руководимой Х.С. Коштоянцем. В опытах Василенко и Коштоянца(1936), произведенных на карпах, было обнаружено, что повышение давления в плавательном пузыре вызывает координированные движения всех плавников тела.
Одновременно происходит сначала усиление, а затем замедление дыхания и замедление сердечных сокращений. Все эти реакции связаны с раздражением рецепторов плавательного пузыря и исчезают после перерезки нервов, отходящих от него. В другой работе Василенко и Ливанов(1936), измеряя токи действия нерва, отходящего от плавательного пузыря, нашли, что изменения давления в плавательном пузыре вызывают резкие изменения ритма спонтанных импульсов нерва. Василенко (1938) были получены также доказательства того, что импульсы, идущие от плавательного пузыря, влияют на тонус мышц всего тела рыбы.
Так, например, если у рыб, лишенных глаз и лабиринтов, выкачать газы из плавательного пузыря, то они не производят плавательных движений и бессильно ложатся на дно аквариума, однако если давление в пузыре опять повысить до нормы, то рыбы не только начинают нормально плавать, но и явно увеличивают тонус своей скелетной мускулатуры.
Восприятие изменения атмосферного давления.
У некоторых рыб плавательный пузырь несет еще другие функции. Так, например, у карпов имеется своеобразное подвижное соединение между плавательным пузырем и лабиринтом посредством веберовских косточек. Передний отдел плавательного пузыря карпов эластичен и при изменениях атмосферного давления может сильно расширяться. Эти расширения затем предаются на веберовские косточки, а с последних на лабиринт.
Подобные соединения имеются у сомов и особенно выступают у гольцов, у которых весь задний отдел пузыря утерян, равно как и его гидростатическая функция; пузырь при этом заключен в костную капсулу. От кожи с обеих сторон тела тянутся закрытые снаружи перепонкой, наполненные лимфой, каналы и подходят к стенкам плавательного пузыря в том месте, где он свободен от костной капсулы. Изменения давления передаются от кожи через каналы и плавательный пузырь, а от последнего через веберовский аппарат лабиринту. Таким образом, это устройство похоже на барометр анероид, и функцией плавательного пузыря в первую очередь является восприятие изменения атмосферного давления.
Изменение поведения карпов, сомов и гольцов при колебаниях атмосферного давления общеизвестно. При понижении давления они обычно появляются у поверхности воды. Биологическое значение этого явления, вероятно, заключается в том, что перед грозой над поверхностью воды появляется много летающих насекомых, которые могут послужить пищей для рыб.
Дыхательная функция плавательного пузыря.
У большинства рыб дыхательная функция пузыря не играет значительной роли. То количество кислорода, которое имеется в плавательном пузыре у линей и карпов, как показывают расчеты, могло бы лишь в течение 4 минут покрыть нормальную потребность рыбы в этом газе и, таким образом, не может иметь практического значения для дыхания. У некоторых рыб, которые попадают в неблагоприятные кислородные условия, например у угря, находящегося на суше, или у рыб в состоянии удушья, можно установить некоторое понижение количества кислорода в пузыре. Так, например, у окуня без смены воды в аквариуме содержание кислорода в пузыре снижается с 19-25 до 5-0%. При этом через стенки плавательного пузыря одновременно в значительном количестве может выделяться углекислота. Однако способность к поглощению кислорода из плавательного пузыря у разных рыб весьма различна. Например, у линя, у которого содержание кислорода в плавательном пузыре равно 8%, при смерти от удушья не наступает никакого более или менее сильного его уменьшения.
У некоторых рыб дыхание с помощью плавательного пузыря приобретает более важную роль. К подобным рыбам относится, например, собачья рыба
(Umbra crameri) , встречающаяся в Европе в районе рек Дуная и Днестра. Она способна обитать в бедной кислородом воде канав и болот. Если этой рыбе находящейся в обычной воде с растениями, воспрепятствовать выходу на
поверхность и лишить ее возможности захватывать атмосферный воздух, она погибает от удушья приблизительно через сутки. Опыты показали, что собачья рыба во влажном воздухе без воды может оставаться живой до 9 часов, тогда как в прокипяченной и бедной кислородом воде она погибает уже через 40 минут, если препятствовать захватыванию ею воздуха из атмосферы. Если позволить ей подниматься к поверхности, то содержание в прокипяченной воде собачья рыбка переносит без вреда для себя и только чаще, чем обычно, захватывает воздух.
Она имеет гладкие стенки пузыря, обильно снабженные капиллярными сосудами. Однако обычно у рыб, у которых дыхательная функция плавательного пузыря особенно ясно выражена, стенки его приобретают ячеистый характер, благодаря чему увеличивается поверхность, на которой может происходить обмен газов. Подобное ячеистое строение плавательного пузыря имеется у некоторых Osteoglossidae, Mormyridae, Characinidae и другие. У видов Erythrinus, относящихся к семейству харациновых, роль плавательного пузыря в дыхании настолько велика, что перевязка воздушного хода быстро приводит рыб к смерти. В обычных условиях эти рыбы регулярно с правильными промежутками времени заглатывают воздух в плавательный пузырь. Анализы воздуха, находящегося в плавательном пузыре, показали, что в среднем в нем содержалось 7% кислорода и 0,7% углекислоты. Через 2-3 часа после того, как животным воспрепятствовали заглатывать воздух, содержание кислорода в среднем снизилось до 1,8%, а углекислоты повысилось до 1,5%.
Интенсивный обмен газов в плавательном пузыре происходит также у каймановых рыб, у которых плавательный пузырь имеет вид парного образования, как настоящие легкие. Как показали анализы газов, содержащихся в подобных легких, диффузия кислорода через их стенки происходит в значительном размере. Однако отдача углекислоты совершается в меньшей степени, и плавательный пузырь каймановых рыб содержит углекислоты не более чем многие другие открытопузырные рыбы. Очевидно, удаление избытка углекислоты происходит у них через жабры и, может быть, через кожу.
Наиболее ярко выражено воздушное дыхание у двоякодышащих рыб, которые вместо плавательного пузыря имеют настоящие легкие, очень сходные по своему устройству с легкими амфибий. Легкие двоякодышащих состоят из множества ячеек, в стенках которых расположены гладкие мышцы и обильная сеть капилляров. В отличие от плавательного пузыря, легкие двоякодышащих (а также многоперых) сообщаются с кишечником с его брюшной стороны и снабжаются кровью от четвертой жаберной артерии, в то время как плавательный пузырь прочих рыб получает кровь из кишечной артерии.