Основы процесса клонирования
Рефераты >> Биология >> Основы процесса клонирования

Рассмотрим суть экспериментов несколько подробнее. В середине 1990х годов коллектив под руководством доктора Дж. Коэна из Института репродуктивной медицины и науки в штате Нью-Джерси (США) разработал и применил так называемую технику переноса плазмы, которая позволяла преодолеть врожденное бесплодие женщин, вызванное дефектом митохондрий. В яйцеклетку женщины, страдающей бесплодием, тончайшей пипеткой вводят сперматозоид мужа (который и производит собственно оплодотворение) и капельку цитоплазмы из яйцеклетки здоровой женщины - донора. Перенесенные таким образом цитоплазматические структуры— митохондрии, обеспечивающие снабжение клеток энергией, приживляются в яйцеклетке, восстанавливают нормальный уровень энергетического метаболизма и обеспечивают дальнейшее нормальное развитие яйцеклетки в матке матери, куда она возвращается после микрооперации. С 1997 по 2001 год эту операцию провели на яйцеклетках 30 страдавших бесплодием женщин. Двенадцать женщин родили детей, причем у трех появились двойни. Сейчас эту технику освоили многие лаборатории.

Изучение митохондриальной ДНК двух младенцев показало, что в их клетках действительно присутствуют митохондрии и родной матери, и женщины-донора. Переноса какого-либо другого генетического материала, кроме ДНК митохондрий, как и ожидалось, не обнаружили. Группа под руководством доктора Ю. Верлинского, работающая в Институте репродуктивной генетики в Чикаго, обеспечила зачатие ребенка, свободного от гена, вызывающего рак. Этот ген ребенок мог унаследовать от своего отца, предрасположенного к развитию онкологических заболеваний (так называемый синдром Лифромени, вызываемый мутацией в гене p53). У страдающих этим наследственным недостатком людей, раковые заболевания с вероятностью 50 % развиваются до 40летнего возраста, а нередко — еще в детстве. Отец ребенка был гетерозиготным в отношении патологического гена. Это означает, что половина его сперматозоидов получали мутантную копию гена р53, а половина — нормальную. Оплодотворение яйцеклеток будущей матери производилось в «пробирке». В искусственных условиях оплодотворенные яйцеклетки начинали делиться и достигали стадии восьми клеток. Одна клетка такого зародыша изымалась (операция, считающаяся безвредной, так как дальнейшее развитие зародыша протекает нормально) и подвергалась генотипированию — установлению генотипа с помощью современных методов анализа ДНК. Из 18 зародышей 7 оказались свободными от патологического гена. Три из них были помещены в матку матери, которая забеременела и родила здорового мальчика. Meтод получил название предымплантационной генетической диагностики, и, по словам его разработчиков, может использоваться для предотвращения 45 различных наследственных заболеваний, в том числе тех, которые проявляются или могут проявиться в пожилом возрасте. Предымплантационное выявление генетических дефектов широко применяется в пренатальной диагностике, когда устанавливают генотип развивающегося в матке эмбриона, и в необходимых случаях производят аборт.

Вот пример других процедур, произведенных тем же коллективом врачей и генетиков. Родителями был «заказан» ребенок, который стал бы наиболее подходящим донором костного мозга для своей старшей сестры, страдающей смертельной анемией. Такой ребенок по имени Адам Нэш был «произведен» путем отбора эмбрионов и появился на свет в 2000 году; взятые от него клетки действительно позволили спасти жизнь сестры. В институт доктора Верлинского обратились две пары из Великобритании, не получившие в своей стране разрешение на осуществление подобной манипуляции. Эти пары хотели произвести на свет детей, клетки которых помогли бы спасти жизнь ранее рожденных детей, страдающих неизлечимыми наследственными заболеваниями (в одном случае лейкемией, в другом — талассемией). Лежащая в основе всех рассмотренных работ техника «оплодотворения в пробирке» была разработана в Англии еще в 1978 году. С тех пор, по меньшей мере, миллион детей, появился на свет благодаря этому методу, применяемому в тех случаях, когда женщина не может быть оплодотворена естественным путем. Вправе ли родители «заказывать» ребенка? Выбирать пол, гены долголетия, музыкальных или математических способностей, с определенным цветом глаз или формой носа? Все это в скором будущем может стать реальным. Как и в других случаях, по-видимому, должны рассматриваться цели данной манипуляции и обоснованность желаний родителей.

Готовы ли мы к клонированию людей? Какие проблемы встают перед нами? Если полученный «в пробирке» зародыш с генетическим материалом соматической клетки возвращается в матку, создается возможность действительно получить клон, то есть существо, копирующее физические и врожденные психические свойства донора генетического материала. Вероятно, такие дети появятся в ближайшие годы — слишком много говорится об этой возможности. Опасности для генетического благополучия человечества (для человеческого генофонда) клонирование представлять не может — эта процедура никогда не заменит естественное воспроизводство и не сможет заметным образом сократить разнообразие генотипов в человеческих популяциях. Естественно, научные возражения против клонирования заключаются в том, что технически процедура недостаточно отработана и может привести к появлению физически неполноценных детей. Кто в таком случае несет за это ответственность? Кто будет содержать и воспитывать неполноценного ребенка? Сомнительность процедуры клонирования с этической точки зрения состоит в том, что нарушаются естественные принципы уникальности личности и происхождения каждого человека от двух родителей. Можно опасаться, что в семье и обществе «клонированный» ребенок не будет чувствовать себя комфортно, а его психическое развитие будет искажено.

Рассмотрение мотивов клонирования переводит проблему из этической или религиозной плоскости в юридическую: допустимость клонирования в каждом конкретном случае могла бы решаться так же, как и вопрос об усыновлении ребенка. Итак, достижения экспериментальной генетики и эмбриологии позволяют производить на высших организмах совершенно фантастические эксперименты. Многие из этих достижений могут быть применены и к человеку. Открывающиеся возможности требуют широкого обсуждения, не только в среде специалистов. Обществу необходимо четкое понимание о возможности или недопустимости тех или иных генетических манипуляций. Разумеется, общественность должна быть хорошо информирована о сути новых достижений науки, о получаемых результатах и о возможных негативных последствиях. Как будут развиваться события дальше, какие еще сюрпризы преподнесет нам генетика, сказать сложно, но то, что эта наука может сильно повлиять на ход мировой истории, не вызывает сомнений.

Заключение

Клонирование, бесспорно, важное явление в современном научном мире. Исследования, положившие начало современным достижениям в области клонирования, начали проводиться ещё в XIX в. Клонирование растений – явление очень древнее, стало неотъемлемой частью жизнедеятельности людей, в отличие от клонирования животных и человека, где сделаны только первые шаги. Использование технологии клонирования открывает (небывалую ранее) уникальную возможность решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. Благодаря технологии клонирования предполагается появление ускоренной генетической селекции животных и растений с исключительными производственными показателями. Это может способствовать сохранению редких и исчезающих животных в природных популяциях, размножению скакунов и ценных пушных зверей. Клонирование микроорганизмов в сочетании с трансгенезом открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний человека. Можно сделать вывод о том, что разработка методов получения большого количества стволовых клеток при терапевтическом клонировании даст возможность корректировать и лечить многие до сих пор неизлечимые заболевания, такие, как диабет, болезнь Паркинсона, болезнь Альцгеймера, болезни миокарда, почек, печени, заболевания костей, крови и другие.


Страница: