Основные уровни иерархии биологических систем
СОДЕРЖАНИЕ
Введение
1. Открытые и замкнутые системы, активность и обмен
1.1 Строение системы
1.2 Классификация систем
2. Проблемы экологии
3. Основные уровни иерархии биологических систем
Заключение
Список литературы
ВВЕДЕНИЕ
В первом вопросе данного реферата мною были рассмотрены открытые и замкнутые системы, их активность и обмен.
В современной науке в основе представлений о строении материального мира лежит именно системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.
Под системой понимают внутреннее (или внешнее) упорядоченное множество взаимосвязанных элементов, проявляющее себя как нечто единое по отношению к другим объектам или внешним условиям.
Степень взаимодействия частей системы друг с другом может быть различной. Кроме того, любой предмет или явление окружающего мира, с одной стороны, может входить в состав более крупных и масштабных систем, а с другой стороны — сам являться системой, состоящей из мелких элементов и составных частей. Все предметы и явления окружающего нас мира могут изучаться и как элементы систем, и как целостные системы, а системность является свойством мира, в котором мы живем.
В данной работе было также уделено внимание проблемам экологии. Человек является частью биосферы. Все необходимое для жизни — воду, пищу, значительную часть энергии и строительного материала своих органов — он получает из биосферы. В биосферу человек сбрасывает отходы своей жизнедеятельности. Долгое время природа перерабатывала эти отходы и сохраняла свое равновесие. Однако в последнее столетие вмешательство человека в природные процессы стало не только слишком сильным, но чрезмерным. В этой связи проблемы экологии стали первоочередной задачей всего человечества, которую еще предстоит решить.
Третьим вопросом данной работы являются основные уровни иерархии биологических систем.
1. Открытые и замкнутые системы, активность и обмен
1.1 Строение системы
Рассматривая строение системы, в ней можно выделить следующие компоненты: подсистемы и части (элементы). Подсистемы являются крупными частями систем, обладающими самостоятельностью. Разница между элементами и подсистемами достаточно условна, если отвлечься от их размера. В качестве примера можно привести человеческий организм, безусловно, являющийся системой. Его подсистемами являются нервная, пищеварительная, дыхательная, кровеносная и другие системы. В свою очередь, они состоят из отдельных органов и тканей, которые являются элементами человеческого организма. Но мы можем рассматривать в качестве самостоятельных систем выделенные нами подсистемы, в таком случае подсистемами будут органы и ткани, а элементами системы — клетки.
Таким образом, системы, подсистемы и элементы находятся в отношениях иерархического соподчинения.
1.2 Классификация систем
В рамках системного подхода была создана общая теория систем, которая сформулировала принципы, общие для самых различных областей знания. Она начинается с классификации систем и дается по нескольким основаниям.
В зависимости от структуры системы делятся на дискретные, жесткие и централизованные. Дискретные (корпускулярные) системы состоят из подобных друг другу элементов, не связанных между собой непосредственно, а объединенных только общим отношением к окружающей среде, поэтому потеря нескольких элементов не наносит ущерба целостности системы.
Жесткие системы отличаются повышенной организованностью, поэтому удаление даже одного элемента приводит к гибели всей системы.
Централизованные системы имеют одно основное звено, которое, находясь в центре системы, связывает все остальные элементы и управляет ими.
По типу взаимодействия с окружающей средой все системы делятся на открытые и закрытые.
Открытыми являются системы реального мира, обязательно обменивающиеся веществом, энергией или информацией с окружающей средой.
Закрытые системы не обмениваются ни веществом, ни энергией, ни информацией с окружающей средой. Это понятие является абстракцией высокого уровня и, хотя существует в науке, реально не существует, так как в действительности никакая система не может быть полностью изолирована от воздействия других систем. Поэтому все известные в мире системы являются открытыми.
По составу системы можно разделить на материальные и идеальные. К материальным относится большинство органических, неорганических и социальных систем (физические, химические, биологические, геологические, экологические, социальные системы). Также среди материальных систем можно выделить искусственные технические и технологические системы, созданные человеком для удовлетворения своих потребностей.
Идеальные системы представляют собой отражение материальных систем в человеческом и общественном сознании. Примером идеальной системы является наука, которая с помощью законов и теорий описывает реальные материальные системы, существующие в природе.
2. Проблемы экологии
По представлениям биологов, в природе действует «правило 10%», согласно которому она в экстремальных ситуациях способна выдержать десятикратную нагрузку по сравнению с обычной. Человек своим воздействием на природу вплотную подошел к этому рубежу, и поэтому, сегодня среди прочих глобальных проблем человечества возникла глобальная экологическая проблема сохранения жизни на Земле.
Симптомом современного экологического кризиса является нарушение биотического круговорота вещества — человек стремится взять из природы как можно больше, забывая, что ничто не дается даром. Ведь глобальная экосистема — это единое целое, в рамках которой ничто не может быть выиграно или потеряно и которая не может являться объектом всеобщего улучшения. Все, что было извлечено из нее человеком, должно быть рано или поздно возмещено.
Не учитывая эту аксиому, человек разомкнул существовавшие миллионы лет биотические круговороты и вызвал антропогенное выпадение химических элементов. Так, в доисторический период в почвах Земли было 2000 млрд. т углерода, в конце 1970-х гг. — 1477 млрд. т, т.е. в год в среднем теряется 4,5 млрд. т углерода. Причем эти потери существуют в виде таких отходов, которые природа переработать не может. Постоянно растет потребление человеком энергии. Сегодня оно достигло 0,2% всей солнечной энергии, падающей на Землю. Это сопоставимо с энергией всех земных рек и годовой энергией фотосинтеза. Результат — усиление загрязнения и нарушение термодинамического равновесия биосферы. В настоящее время оно проявляется в глобальном потеплении, которое может привести к повышению уровня Мирового океана, нарушению переноса влаги между морем и сушей, сдвигу климатических поясов, т.е. к глобальному изменению климата.
Еще один признак экологического кризиса — истощение ресурсов редуцентов и продуцентов. Сокращается биомасса микроорганизмов. Вследствие этого, а также в результате роста отходов человека нет достаточного уровня самоочищения среды жизни. Более того, возникают негативные для биосферы и опасные для человека новые формы микроорганизмов, причем некоторые формы создает сам человек.