Организм и внешняя среда
Белки в организме синтезируются практически все время, но далеко не с полным использованием потенциальных возможностей. Некоторые участки генома могут быть на то или иное время репрессированы, т. е. выключены присоединением к ДНК различных веществ (в частности, щелочных белков гистонов). Для того чтобы данный участок опять включился в работу, необходимо отщепление этих веществ, т. е. дерепрессия. Кроме того, для начала синтеза белка должна произойти индукция его, которая также осуществляется присоединением к ДНК различных веществ. При этом дерепрессорами и индукторами могут быть самые различные вещества: гормоны, продукты обмена веществ и др. Природа их до конца еще не изучена.
Состав генома строго стабилен и практически не изменяется под влиянием внешних и внутренних воздействий. Тем не менее в ряде случаев возможно и изменение состава ДНК, замена одного основания другим. Такое явление называют мутацией. В этом случае закодированный на данном участке ДНК белок уже не может синтезироваться с прежней последовательностью аминокислот. Он или совсем перестает образовываться, или создается с измененной структурой. При этом он или теряет свои функциональные свойства, или приобретает новые. Мутации могут наносить вред организму, иногда они приводят его даже к гибели (так называемые летальные мутации). Но они могут и совпадать с интересами организма, сообщая ему новые свойства, способствующие лучшему приспособлению его к условиям среды. В настоящее время мутации осуществляются и искусственно, что открывает широкие перспективы для преобразования живых организмов.
5. Взаимоотношения организма со средой
Ни один живой организм нельзя представить вне окружающей среды и вне взаимодействия с нею. Из среды организм получает питательные вещества и кислород, в нее отдает конечные продукты обмена веществ. Среда воздействует на него рядом своих факторов: лучистой энергией (световой, ультрафиолетовой, радиоактивной), электромагнитными полями, атмосферным и гидростатическим (для ведущих водный образ жизни) давлением, температурой, различными химическими веществами. Она же неизбежно предполагает взаимодействие с другими живыми организмами.
От окружающей среды организм непрерывно получает информацию, на которую реагирует в виде ответных действий: движения, речи (у животных — издания тех или иных звуков), мимики, поедания пищи и т. п. Таким образом, живой организм непрерывно пропускает через себя не только вещества и энергию, но и поток информации.
Воспринимается информация специальными рецеп-торными аппаратами — органами чувств, затем передается центральной нервной системе, где происходит «узнавание» сигнала и формирование ответной реакции. Информация проходит по каналам связи либо в виде электрических импульсов по нервным волокнам в ту или другую сторону (нервная связь), либо с помощью химических веществ по кровяному руслу (гуморальная связь). При этом нервная связь четко направлена на определенный участок (центр) нервной системы или орган, а гуморальная связь более генерализованная, т. е. направлена не на одну мишень, а сразу на несколько. Воспринимающая возможность различных рецепторов и пропускная способность каналов связи неодинаковы, поэтому поток информации, получаемый рецептором, передаваемый от него к центру и сохраняющийся в памяти, тоже различен.
Количество информации принято измерять в двоичных знаках — битах. У человека поток информации через зрительный рецептор равен 108-109 бит/с. Нервные пути пропускают 2 · 106 бит/с. До сознания доходит около 50 бит/с, а в памяти прочно задерживается только 1 бит/с. Таким образом, за 80 лет жизни память удерживает информацию порядка 109 бит. Следовательно, мозгом оценивается не вся, а наиболее важная информация. На пути к нему все несущественное устраняется, отфильтровывается.
Получаемая от среды информация определяет работу функциональных систем организма и поведение человека или животного, регулируя их: усиливая или ослабляя.
Для управления поведением человека и активностью его функциональных систем (т. е. выходной информацией, идущей из мозга) достаточно около 107 бит/с при подключении программ, содержащихся в памяти.
Жизнедеятельность организма регулируется прежде всего на субклеточном и молекулярном уровнях. Это химическая авторегуляция реакций обмена веществ. Она решает местные задачи и является основой всех видов регуляции. Осуществляется она путем изменения концентраций метаболитов, повышения или снижения активности и количественного содержания ферментов, т. е. усиления или угнетения их синтеза, структурных изменений их и других функциональных белков. Но регуляция происходит и на более высоких уровнях: клетки в целом, ткани, органа, функциональной системы, организма. Чем на более высокий уровень передаются управляющие выходные сигналы, тем более обобщенный характер они носят. У человека и животных высшим центром, управляющим вегетативными функциями (кровообращением, дыханием, движением, выделением гормонов и т.п.), является гипоталамус, расположенный в нижней части промежуточного мозга, имеющий связи с системой желез внутренней секреции, другими частями мозга и центром сознания — его корой. Поступающие сигналы могут осознаваться или не осознаваться. Управляющие ответы на неосознанные сигналы среды могут осуществляться гипоталамусом и без участия высшего отдела головного мозга — его коры.
В обычных, привычных для организма условиях среды он находится в уравновешенном с ней состоянии. Он сохраняет постоянство как уровня активности функциональных систем, так и состава своей внутренней среды. Но условия среды могут изменяться в неблагоприятную для организма сторону. Нередко эти изменения происходят очень быстро, а порой несут тревожную информацию. Но организм далеко не всегда может сразу настроиться так, чтобы без существенного вреда перенести новые условия. Так, оказавшись на высоте, где снижено парциальное давление кислорода и углекислоты, под влиянием получаемой информации организм перестраивает свою функциональную активность на изменившиеся уровни: возрастают частота и минутный объем дыхания, частота сердечных сокращений, увеличивается объем циркулирующей крови, но степень насыщения артериальной крови кислородом все равно снижается.
Влияние пониженного барометрического давления на некоторые функции организма человека
Давление, кПа |
Высота над уровнем моря, M |
Парциальное давление в альвеолярном воздухе, кПа |
Частота в 1 мин |
Минутный объем дыхания, л/мин |
Объем циркулирующей крови, мл/кг |
Насыщение артериальной крови кислородом,% | ||
O2 |
CO2 |
дыхания |
сердечных сокращений | |||||
99.1 |
0 |
13.3 |
5.0 |
12 |
70 |
8.8 |
38 |
98 |
64.2 |
3658 |
6.3 |
4.9 |
14 |
103 |
9.1 |
60 |
85 |
54.8 |
4877 |
5.5 |
4.1 |
12 |
103 |
9.5 |
70 |
80 |
50.4 |
5486 |
5.0 |
3.4 |
12 |
108 |
11.1 |
70 |
77 |
46.4 |
6009 |
4.5 |
3.3 |
13 |
107 |
13.0 |
70 |
76 |
42.7 |
6705 |
4.0 |
3.2 |
15 |
124 |
15.0 |
70 |
64 |