Музыка и мозг
Музыка окружает нас повсюду. При звуках мощного оркестрового крещендо на глаза наворачиваются слёзы и по спине бегут мурашки. Музыкальное сопровождение усиливает художественную выразительность фильмов и спектаклей. Рок-музыканты заставляют нас вскакивать на ноги и танцевать, а родители убаюкивают малышей тихими колыбельными песнями.
Любовь к музыке имеет глубокие корни: люди сочиняют и слушают её с тех пор, как зародилась культура. Более 30 тыс. лет назад наши предки уже играли на каменных флейтах и костяных арфах. Похоже, это увлечение имеет врождённую природу. Младенцы поворачиваются к источнику приятных звуков (консонансов) и отворачиваются от неприятных (диссонансов). А когда мы испытываем благоговейный трепет при финальных звуках симфонии, в головном мозге активизируются те же центры удовольствия, что и во время вкусной трапезы, занятий сексом или приёма наркотиков.
Почему же музыка столь значима для человека и имеет над ним такую власть? Окончательных ответов у нейробиологов пока нет. Однако в последние годы начали появляться некоторые данные о том, где и каким образом происходит переработка музыкальной информации. Изучение пациентов с черепно-мозговыми травмами и исследование здоровых людей современными методами нейровизуализации привели учёных к неожиданному выводу: в головном мозге человека нет специализированного центра музыки. В её переработке участвуют многочисленные области, рассредоточенные по всему мозгу, в том числе и те, что обычно задействованы в других формах познавательной деятельности. Размеры активных зон варьируют в зависимости от индивидуального опыта и музыкальной подготовки человека. Наше ухо располагает наименьшим количеством сенсорных клеток по сравнению с другими органами чувств: во внутреннем ухе находится всего 3,5 тыс. волосковых клеток, а в глазу — 100 млн. фоторецепторов. Но наши психические реакции на музыку отличаются невероятной пластичностью, т. к. даже кратковременное обучение способно изменить характер переработки мозгом „музыкальных входов“.
Музыка в голове
До того как были разработаны современные методы нейровизуализации, исследователи изучали музыкальные способности головного мозга, наблюдая за пациентами (включая знаменитых композиторов) с различными нарушениями его деятельности вследствие травмы или инсульта. Так, в 1933 г. у французского композитора Мориса Равеля появились симптомы локальной мозговой дегенерации — заболевания, сопровождающегося атрофией отдельных участков мозговой ткани. Мыслительные способности композитора не пострадали: он помнил свои старые произведения и хорошо играл гаммы. Но сочинять музыку не мог. Говоря о своей предполагаемой опере „Жанна д'Арк“, Равель признавался: „Опера у меня в голове, я слышу её, но никогда не напишу. Всё кончено. Сочинять музыку я больше не в состоянии“. Он умер спустя четыре года после неудачной нейрохирургической операции. История его болезни породила среди учёных представление, что головной мозг лишён специализированного центра музыки.
ЗВУКИ И МОЗГ
Когда мы слушаем музыку, головной мозг реагирует на неё активизацией нескольких областей за пределами слуховой коры, включая те, которые обычно участвуют в других формах мыслительной деятельности. На переработку музыкальной информации оказывает влияние зрительный, осязательный и эмоциональный опыт человека.
Достигающие человека звуки преобразуются структурами наружного и среднего уха в колебания жидкости во внутреннем ухе. Крошечная косточка среднего уха, стремечко, „сотрясает“ улитку, изменяя давление заполняющей её жидкости.
В свою очередь, вибрации базилярной мембраны улитки заставляют сенсорные рецепторы уха, волосковые клетки, генерировать электрические сигналы, направляющиеся по слуховому нерву в головной мозг. Каждая волосковая клетка настроена на определённую частоту колебаний жидкости.
Переработка головным мозгом музыки основана на иерархическом и пространственном принципах. Первичная слуховая кора, получающая входы от уха и (через таламус) низших слуховых центров, участвует в начальных процессах восприятия музыки, например, анализе высоты звука (частоты тона). Под влиянием опыта первичная слуховая кора может перенастраиваться — в ней увеличивается число клеток, обладающих максимальной реактивностью к важным для человека звукам и музыкальным тонам, что влияет на дальнейшую переработку музыкальной информации во вторичных слуховых областях коры и слуховых ассоциативных зонах, где происходит переработка более сложных музыкальных характеристик (гармонии, мелодии и ритма).
Когда музыкант играет на инструменте, активность моторной коры, мозжечка и других структур мозга, участвующих в планировании и осуществлении специфических, точно выверенных во времени движений, возрастает.
Гипотезу подтвердил случай другого известного музыканта. После перенесённого в 1953 г. инсульта русский композитор Виссарион Шебалин оказался парализован и перестал понимать речь, но до самой смерти, последовавшей через 10 лет, сохранил способность к сочинительству. Таким образом, предположение о независимой переработке музыкальной и речевой информации оказалось верным. Впрочем, более поздние исследования внесли коррективы, связанные с двумя общими особенностями музыки и языка: обе психические функции являются средством общения и обладают синтаксисом — набором правил, определяющих надлежащее соединение элементов (нот и слов, соответственно). По мнению Анирудха Патела (Aniruddh D. Patel) из Института нейробиологии в Сан-Диего, исследования, проведённые методами нейровизуализации, указывают на то, что правильную конструкцию языкового и музыкального синтаксисов обеспечивает участок фронтальной (лобной) коры, а другие отделы мозга отвечают за переработку связанных с ним компонентов языка и музыки.
Также мы получили полное представление о том, как головной мозг реагирует на музыку. Слуховая система, как и все прочие сенсорные системы организма, имеет иерархическую организацию. Она состоит из цепочки центров, которые перерабатывают нервные сигналы, направляющиеся из уха в высший отдел слухового анализатора — слуховую кору. Переработка звуков (например, музыкальных тонов) начинается во внутреннем ухе (улитке), сортирующем сложные звуки (издаваемые, например, скрипкой) на составляющие элементарные частоты. Затем по волокнам слухового нерва, настроенным на разную частоту, улитка посылает информацию в виде последовательности нейронных разрядов (импульсов) в головной мозг. В итоге они достигают слуховой коры в височных долях мозга, где каждая клетка реагирует на звуки определённой частоты. Кривые частотной настройки соседних клеток перекрываются, т. е. разрывы между ними отсутствуют, и на поверхности слуховой коры формируется частотная карта звуков.