Мир звезд
Источники звездной энергии были все еще неизвестны, но их мощность и распредёление по глубине использовались астрофизиками для расчета моделей звезд. Таково было положение на этом участке общего фронта наступления на проблему.
4. Жизненный путь звезды
Первые попытки проследить жизненный путь звезды были весьма робкими. Применение законов Лейна к гипотезе гравитационного сжатия Гельмгольца — Кельвина уже принесло новый результат: сжимающаяся звезда должна разогреваться (температура изменяется обратно пропорционально радиусу!), пока увеличение плотности не замедлит сжатие настолько, что расход энергии превысит приход. Тогда звезда начнет остывать. Эволюционный путь звезды, таким образом, уже сто лет назад представлялся состоящим из двух ветвей: восходящей и нисходящей. А. Риттер в 1883г. прямо указывал на то, что красные гиганты находятся на восходящей, а красные карлики — на нисходящей ветви эволюции.
Оригинальную гипотезу происхождения звезд путем конденсации из метеорной материи предложил Норман Локиер в своем выступлении 17 ноября 1887г. перед Лондонским королевским обществом. Развивая свою гипотезу дальше, Локиер опирался не только на теоретические выводы Лейна и Риттера, но и на результаты исследований спектров звезд. Схема эволюции звезд по Локиеру выглядит так. В начале жизненного пути находятся красные гиганты типа Антареса (класс М), затем звезда проходит стадии оранжевого гиганта, как Альдебаран (К5), желтого гиганта, как Полярная (Г8), белого гиганта, как, Ценеб (А2) и Ригель (В8). На вершине эволюции находятся самые горячие голубые звезды: γ Парусов и ζ Кормы (класс О). На нисходящей ветви последовательно располагаются бело-голубые звезды, как Ахериар (В5), белые, как Сириус (АО), бело-желтые, как Процион (Е5), желтые, как Солнце (i) и Арктур (К), наконец, красные карлики, как 19 Рыб (N). Дальше звезда угасает и становится темной. Но Локиер, разрабатывая свою схему эволюции звезд, исходил из убеждения, что химические элементы состоят из еще более простых элементарных частиц, которые он называл "протоэлементами". Эти частицы не были едины для всех элементов, как известные ныне протон, нейтрон и электрон, а носили более индивидуализированный характер. Так, водород, по Локиеру, при высокой температуре распадается на "протоводород", который и дает усиленные линии в спектре - с-линии, по классификации мисс Мори. Железо превращается в "протожелезо" и дает линии искрового спектра, и т. д. В действительности "протоводород" оказался ионом гелия, другие усиленные линии оказались принадлежавшими нонам металлов. Но идеи Локкиера, окончательно сформулированные им в 1900 г., спустя 13 лет в несколько ином виде (без метеорной гипотезы и "протоэлементов" были развиты Генри Норрисом Ресселом в его гипотезе эволюции звезд, основанной на диаграмме.
13 июня 1913г. он доложил свою гипотезу на собрании Королевского астрономического общества в Лондоне. Спустя полгода, 30 декабря 1913г., он повторил свой доклад на съезде Американского астрономического общества "Если мы расположим звезды, которые мы изучаем, в порядке возрастания плотности, то мы должны начать с гигантских звезд класса М и затем проследить ряд гигантов в порядке, обратном тому, в каком обычно располагаются спектры, до звезд классов А и В и далее при все еще возрастающей, хотя уже и медленнее, плотности перейти вниз на последовательность карликов в обычном порядке изменения спектральных классов, встретив на пути Солнце, к тем красным звездам (снова в класс М), которые являются самыми слабыми из известных в настоящее время звезд", — так описывал Рессел свою гипотезу.
Первая гипотеза звездной эволюции Рессела получила всеобщее признание. Но ненадолго. Спустя 12 лет сам автор гипотезы приступил к ее пересмотру. И для этого у него было немало оснований. В результате работ Дж. Джинса, А. Эддингтона и самого Г. Н. Рессела стало ясно, что основным источником энергии в звездах является не гравитационное сжатие, а какой то иной механизм, сопровождаемый переходом части вещества в поле излучения.
В 1924г. А. Эддингтон установил очень важное обстоятельство, состоявшее в том, что ионизованный газ в недрах звезды обладает практически неограниченной сжимаемостью. Таким образом, звездное вещество при любых плотностях ведет себя как идеальный газ. Кроме того, почти для всех элементов в недрах звезд, за исключением водорода и гелия, средний молекулярный вес оказался близким к двум. Большое значение имела также разработка в эти годы теории лучистого равновесия (в основном трудами А. Эддингтона) и вывод Г. Крамерсом формулы для коэффициента поглощения излучения звездной материей.
В свете этих открытий охлаждение красных карликов следовало объяснять уже не замедлением сжатия из-за уплотнения вещества в их недрах, а ростом непрозрачности звездной материи по мере этого уплотнения.
Перерабатывая свою гипотезу, Рессел исходил из следующих соображений. Главная последовательность на Г—Р-диаграмме — не узкая линия, а довольно широкая полоса. Между тем, если бы все звезды имели одинаковый химический состав, выход энергии на единицу массы определялся бы только температурой и плотностью звезды. Диаграмму "спектр—светимость" можно преобразовать в другую диаграмму: "температура—плотность", и тогда все звезды главной последовательности легли бы на тонкую линию. Раз этого нет, значит, выход энергии зависит от состава вещества, очевидно, того самого вещества, за счет которого эта энергия вырабатывается. Рессел назвал эту "активную" материю "материей карликов" (поскольку значительную часть звезд главной последовательности составляли карлики).
Но на Г—Р-диаграмме была еще ветвь гигантов, кроме того, в левом нижнем углу диаграммы находилось несколько слабых белых звезд (спутник Сириуса, Эридана В, спутник Проциона), получивших название белых карликов и представлявших некоторое время загадку. При крайне малых размерах они имели массу порядка солнечной, а значит, чудовищную плотность: в десятки и сотни тысяч раз больше плотности воды. Сначала это казалось астрономам необъяснимым, но после открытия Эддингтоном факта неограниченной сжимаемости звездного газа белые карлики перестали быть загадкой.
Рессел предположил, что ветвь гигантов как бы через перекидной мост соединяется на Г—Р-диаграмме с областью белых карликов и так как звезды и здесь не ложатся на узкую линию, то, значит, все дело в том, что и у них выход энергии зависит от содержания некоей активной материи, но иного типа, чем у звезд главной последовательности, — "материи гигантов".
Теперь оставалось задаться предположением о начальной массе звезды и о том, испытывает ли она малые или большие потери массы в ходе эволюции. Весь путь эволюции звезды определяется теперь тремя различными механизмами пополнения энергии:
1) гравитационное сжатие,
2) потребление (т. е. переход в излучение) материи карликов,
З) потребление материи гигантов.