Микробная коррозия и ее возбудители
Рефераты >> Биология >> Микробная коррозия и ее возбудители

Введение

В связи с бурным развитием промышленности резко возросли размеры коррозионных повреждений металлических и неметаллических конструкций и сооружений. Ежегодно в результате коррозии промышленность теряет сотни тысяч тонн металла [1, 2].

Коррозионным разрушениям подвержены подземные, наземные и подводные сооружения (газопроводы, нефтепроводы, бензобаки, тепловоды, кабели, емкости для хранения топлива, насосные трубы, корпуса судов, оградительные морские сооружения и др.).

Убытки, причиняемые коррозией, огромны. По официальным данным они исчисляются миллиардами долларов, фунтов стерлингов, франков, рублей. Так, по данным Le Metayer (1973), общая сумма убытков от коррозии во Франции в конце 50-х годов составляла 8 млрд. новых франков. К настоящему времени эта цифра удвоилась и, по мнению Метайе, будет расти. В среднем потери от коррозии составляют ежегодно 10-15% годового бюджета стран [1, 2].

В последние годы коррозия металлических и неметаллических материалов стала объектом исследования не только материаловедов и электрохимиков, но и микробиологов. Роль биологического фактора в коррозии металлов и повреждениях различных неметаллических материалов трудно преувеличить. Микробному разрушению практически подвергается все, что нас окружает: металл, бетон, стекло, камень, резина, кожа, асфальт, текстиль, пластмассы, смазки и др.

По данным Booth (1964), более 50% коррозионных повреждений трубопроводов может быть отнесено за счет деятельности микроорганизмов, a Butlin и Postgate (1954) приписывают микроорганизмам 3/4 всех потерь от коррозии. В нефтедобывающей промышленности 80% коррозионных разрушений осуществляется сульфатредуцирующими бактериями (Lichtenstein, 1968 а). Коррозионную деятельность микроорганизмов по масштабам можно сравнить разве только с их геологической деятельностью. В зависимости от экологических условий в коррозионном процессе принимают участие различные группы микроорганизмов. Наиболее активными коррозионными агентами являются тионовые и нитрифицирующие бактерии, создающие кислые агрессивные среды, сульфатредуцирующие бактерии - основной агент анаэробной биокоррозии, гетеротрофные микроорганизмы, образующие коррозионно активные метаболиты (NH3, CO2, H2S, органические кислоты). В условиях повышенной влажности и температуры важное место в биоповреждениях материалов принадлежит грибам [1].

1. Микроорганизмы – деструкторы лаков и красок

Рост плесневых грибов на красках проявляется пятнами, и многие разновидности такого плесневого зарастания выпадают в загрязняющий осадок. Часто оба фактора - плесень и небиологические осадки - взаимосвязаны. Осадок дает достаточно питания для развития микроорганизмов. Нарастающая масса микроорганизмов образует подходящую поверхность для скопления еще большего количества загрязнений, а это создает питание другим микроорганизмам и т. д. Таким путем происходит накопление небиологических осадков, включающих в себя и микроорганизмы. Если в это сочетание входит фунгицид, то рост плесени на небиологических осадках значительно ограничен или вообще исключен, в этом случае, несмотря на накапливание загрязнений, рост микроорганизмов тормозится. Обнаружить микробиологические формы в поверхностных загрязнениях на красках часто нелегко. Разработка методики анализа характера загрязнений на лакокрасочном покрытии привела к убеждению, что роль микроорганизмов в этом значительно большая, чем считали прежде [1, 2].

В вопросах повреждения плесневыми грибами лакокрасочных материалов (рисунки 1-3) и защиты их обычно различают: а) плесневение и защиту упакованных лакокрасочных материалов. В этом случае защита необходима только для разбавляемых водой красок, например распространенных сейчас за рубежом эмульсионных или применявшихся раньше казеиновых красок; б) плесневение и защита сухих лакокрасочных пленок, применяемых как для внешних работ, так и для внутренней отделки. В настоящее время решены вопросы, связанные с поражением плесневыми грибами масляных, масляно-смоляных, алкидных и латексных покрытий, применяемых для внешних и внутренних работ.

В случае капельно-жидких эмульсионных красок (в упаковке) установить микробиологическое повреждение нелегко. Если в эмульсию в качестве защитного коллоида вводится казеин, то микробиологическое повреждение проявляется образованием газа и более или менее сильным запахом. Краска может ослизняться. Признаком наибольшего повреждения является желатинизация. Кроме внесения защитных препаратов в краску необходимо в производственном процессе регулярно дезинфицировать и мыть горячей водой емкости, краскотерки и особенно трубопроводы [2, 5].

Рисунок 1 - Рост мицелия на синтетическом кроющем эмалевом лаке печной сушки. Испытывалось в чашке Петри. Инфицировано промытыми спорами плесневых грибов [2]

Одна из разновидностей роста плесени - от субстрата к поверхности пленки, например от поверхности древесины. Иногда плесень не выступает на поверхность покрытия, но все же образует на ней цветные пятна. Так, Phoma pigmentivora выделяет в субстрате (древесине) пигмент, растворимый в масляных покрытиях. Если на субстрат нанести масляное покрытие, то выделенный плесенью пигмент проникает в новую пленку, и через некоторое время на поверхности покрытия появляются фиолетовые пятна. Этот тип окрашивания наблюдался особенно в более холодных областях. Применение покрытия, устойчивого к плесневению, не препятствует возникновению такого окрашивания [1].

Рисунок 2 - Рост плесневых грибов на разжиженном битуме. Испытывалось в чашке Петри на агаровой питательной среде. Инфицировано смешанной культурой плесневых грибов[2]

Рисунок 3 - Рост плесневых грибов на буроугольной смоле. Испытывалось в чашке Петри на агаровой питательной среде. Инфицировано смешанной культурой плесневых грибов [2]

Описанные формы роста плесневых грибов (особенно рост гриба внутри пленки) вызывают физические изменения пленки, которая теряет эластичность (вследствие изменения связующего вещества) и устойчивость к действию воды и щелочей, ухудшается ее адгезионная способность (меньшее движение воздуха, большая относительная влажность, например в прачечных, наличие органических остатков от производственного процесса и т.п.). Большинство задач защиты внутренних и наружных покрытий от плесневения решается применением фунгицидов.

Наибольшее влияние на сопротивляемость лакокрасочных покрытий плесневению оказывают связующие вещества, потом пигменты и наполнители (вместе они составляют почти весь сухой остаток пленки). Меньшее влияние (или никакого) оказывают компоненты, содержащиеся в меньшем количестве, например, вещества, полностью улетучивающиеся во время сушки: растворители, разбавители, пластификаторы, сиккативы и др.


Страница: