Клетка строение и внутренние процессы
Лизосомы содержат пищеварительные ферменты, которые разрушают отработанные органеллы, а также частицы и молекулы, поглощенные клеткой извне путем эндоцитоза. Рис. 7 (Б).
Рис. 7 (Б)
Вопрос 3. Энергетический метаболизм и использование энергии
В энергетич. обмене рассматривают превращения хим. энергии, образующейся в обмене веществ, в тепло, мышечную работу, а также механизмы ее использования в активном транспорте, биосинтезе и др.
В клетке химическая энергия запасается в виде так называемых «высокоэнергетических» метаболитов. Наиболее важным таким метаболитом, макроэргом обеспечивающим энергией большое число энергозависимых реакций, является АТФ. Рис. 8 (А).
Рис. 8 (А)
АТФ = АДФ + Ф.
Суть этого цикла: При гидролизе концевой фосфоангидридной связи АТФ превращается в АДФ и ортофосфат, и освобождается большое количество свободной энергии. Величина свободной энергии гидролиза АТФ делает возможным его образование из АДФ за счет переноса фосфатного остатка от других высокоэнергетических фосфатов.
У животных, растений и грибов синтез АТФ протекает в специализир. субклеточных структурах-митохондриях. В зеленых водорослях и высших растениях фотосинтез происходит в хлоропластах.
Энергия света в процессе фотосинтеза используется для синтеза органических соединений из CO2 и воды. В световой реакции образуется АТФ.
Гликолиз – это катаболический путь обмена веществ в цитоплазме. Баланс гликолиза простой: в аэробных условиях молекула глюкозы деградирует до двух молекул пирувата. Кроме того, образуются по две молекулы АТФ и НАДН + H+ (аэробныйгликолиз). В анаэробных условиях пируват претерпевает дальнейшие превращения, обеспечивая при этом регенерацию НАД+. При этом образуются продукты брожения, такие, как лактат или этанол (анаэробныйгликолиз).
Окислительное фосфорилирование, синтез АТФ из аденозиндифосфата и неорг. фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении орг. в-в в процессе клеточного дыхания. В общем виде окислительное фосфорилирование и его место в обмене в-в можно представить схемой:
Митохондрии и хлоропласты осуществляют синтез АТФ. Рис. 9., согласно которому: а) – митохондрии (указаны стрелкой), видимые в световом микроскопе; б – ультраструктура митохондрий: 1 – митохондриальный матрикс, 2 – внутренняя митохондриальная мембрана, 3 – межмембранное пространство, 4 – внешняя митохондриальная мембрана; в – общая схема функционирования митохондрий: при переносе электронов в цепи окисления в межмембранном пространстве накапливаются протоны и при достижении определенного потенциала возвращаются в матрикс; энергия этого потенциала тратится на синтез АТФ.
Рис. 9
Хлоропласты – это органеллы, которые, подобно митохондриям, окружены двумя мембранами. Во внутреннем пространстве, строме, находятся тилакоиды, уплощенные мембранные мешки, которые будучи сложены стопками образуют граны. Внутреннее содержимое тилакоида называют люменом. Рис. 10 (в голубой рамке).
Рис. 10 (в голубой рамке)
Вопрос 4. Опорно-двигательная система клетки (Цитоскелет)
ядерный метаболизм клетка мембрана
Цитоскелет – это совокупность фибриллярных компонентов цитоплазмы эукариотических клеток. Основными типами фибрилл в составе цитоскелета являются актиновые филаменты, микротрубочки и промежуточные филаменты. Относительно функций промежуточных филаментов известно очень мало. Предполагается, что промежуточные филаменты играют механическую роль в межклеточных взаимодействиях и в организации тканевой структуры. В состав промежуточных филаментов у клеток из различных тканей входят следующие белки: виментин, десмин, глиальный фибриллярный кислый белок, белки нейрофиламентов, кератины, ламины.
Схема строения актиновых микрофиламентов на Рис. 11 (А).
Рис. 11 (А)
Актиновые филаменты или фибриллярный актин (F-актин) представляют собой тонкие фибриллы диаметром 6-8 нм. Они являются результатом полимеризации глобулярного актина – G-актина. Актиновые филаменты играют ключевую роль в сократительном аппарате мышечных и немышечных клеток, а также принимают участие во многих других клеточных процессах, таких как подвижность, поддержание формы клеток, цитокинез. Существуют системы в которых движение органелл происходит по актиновым филаментам. Движение органелл по актиновым филаментам опосредуется миозинами (актин-связывающими белками), которые объединяются в одну группу благодаря наличию общего "головного" домена, обладающего АТФазной активностью.
Схема строения микротрубочки на Рис. 12.
Рис. 12
Белком микротрубочек является тубулин, полимеризация которого приводит к образованию этих структур. Еще есть белки, ассоциированные с микротрубочками (MAP) и белки – транслокаторы. Тубулин – очень консервативный белок, связывающий две молекулы ГТФ, и может также связывать ионы кальция и магния. Функция динеина в биении ресничек и жгутиков, преобразуя энергию АТР в механическое усилие. Микротрубочки имеют две основные функции – двигательную и структурную. Двигательная функция заключается в том, что по микротрубочкам с помощью специальных транспортных белков – транслокаторов – осуществляется движение клеточных органелл. Структурная функция состоит в поддержании с помощью микротрубочек определенной формы клетки или ее части.
В клетках концы микротрубочек, как правило, ассоциированы со специальными структурами – ЦОМТ (центр организации микротрубочек). Некоторые ЦОМТ (например, центриоли, базальные тельца) содержат систему сложно организованных микротрубочек. Другие же представляют собой скопления аморфного электронно-плотного материала. Эти скопления могут быть ассоциированы с другими клеточными компонентами, такими как центриоли, базальные тельца, ядерная оболочка, плазматическая мембрана. Типы ЦOМТ: центросомы, базальные тельца, кинетохоры. Рис. 13 (Б, кружочек).
Рис. 13 (Б, кружочек)
В большинстве животных клеток область, где впервые образуется веретено, содержит центриоли. Каждая пара центриолей в митозе становится частью митотического центра, от которого лучами расходятся микротрубочки. Между тем у многих организмов, в том числе у высших растений, функционально полноценное веретено образуется при полном отсутствии центриолей. Кроме того, если у живой клетки разрушить лазерным микролучом центриоли, то митотическое веретено продолжает нормально функционировать. По-видимому, центриоли не являются структурами, необходимыми для сборки микротрубочек веретена; но если центриоли в клетке есть, то они играют роль фокусов, в которых сходятся микротрубочки.