Как ген, хромосома и клетка противодействуют среде и избегают гибели
Поддержание постоянства достигается путем сохранения генных последовательностей. В этом участвует несколько механизмов: 1) репарация ДНК, состоящая в замене тех оснований, которые неправильно включились или модифицировались; 2) коррекция, осуществляемая ДНК-полимеразой, которая вырезает участки ДНК, непригодные для репликации; 3) элиминация целых хромосомных участков, целых хромосом и целых хромосомных наборов. Такая элиминация – упорядоченный процесс, которому предшествуют маркировка и узнавание на молекулярном уровне.
Введение новшеств, или создание новых генных последовательностей, хорошо установлено на молекулярном уровне. Ген иммуноглобулина создан хромосомой с использованием тривиальных молекулярных механизмов. Две последовательности ДНК, которые в клетках зародышевой линии мышей непосредственно не функционировали, т.е. не транскрибировали РНК, а поэтому не могли рассматриваться как структурные гены, объединяются при помощи перестроек в соматических тканях, в результате чего они становятся активными и образуют ген иммуноглобулина. Избыточность и амплификация также представляют собой процессы, ведущие к новшествам. Они не только увеличивают число копий генов, но и порождают новые взаимодействия между существующими генами, модифицируя их активность.
Разведка заключается в переводе генетических путей на новые функциональные направления. В сущности хромосомы постоянно исследуют возможности новых решений. ДНК можно расщеплять и воссоединять. Это замечательное свойство лежит в основе всех хромосомных перестроек, выражающихся в таких странных формах, как транслокации, инверсии, дупликации и делении. Они не кажутся нам странными лишь потому, что происходят так часто в отдельных хромосомах и между ними. Новые функции, которые приобретают гены в результате некоторых из этих перестроек, приводят к образованию новых функциональных направлений. Важно отметить, что хромосома осуществляет все это в пределах собственных границ и с помощью собственных молекулярных механизмов. Для этого ей необходимо лишь оставаться в клетке, из которой она черпает необходимые молекулы.
Как клетка противодействует среде и избегает гибели
Плазмиды – это примитивные хромосомы, ведущие себя как независимые единицы. Они имеют собственную систему репликации и содержат собственные гены.
Передаваясь с помощью конъюгации от одной бактериальной клетки другой, плазмиды избегают воздействия среды. Плазмида может содержать гены, позволяющие клетке-реципиенту выжить за счет клетки-донора. Как пишет Новик, "у плазмид в процессе эволюции выработалась способность выживать независимо от судьбы их вида-хозяина – нечто совершенно немыслимое в рамках эволюции путем естественного отбора для элемента, который был просто компонентом генома отдельного организма". Клетка погибает, но хромосоме, выживание которой должно было бы целиком зависеть от ее существования в клетке, удается выжить.
У плазмид наблюдается и другое свойство, которое дает возможность бактериальной клетке выжить. Их гены устроены таким образом, что они обеспечивают как генетическую стабильность, так и генетическую пластичность. Вирусы с трудом приобретают новые гены, но плазмиды делают это, сохраняя механизмы, регулирующие их репликацию. Способность плазмид приобретать новые гены и перераспределять старые позволяет бактериальной клетке преодолевать многие трудные физиологические ситуации. Эта способность к обновлению – прямой продукт их молекулярного строения.
Добавочные, или В-хромосомы высших организмов, имеющиеся у сотен видов растений и животных, обеспечивают выживание эукариотической клетки примерно таким же образом, как это делают плазмиды в случае бактериальной клетки. У добавочных хромосом имеются собственные механизмы увеличения численности, такие как нерасхождение, и собственные генетические эффекты, усиливающие рекомбинацию, подавляющие конъюгацию, влияющие на частоту образования хиазм и ведущие к элиминации хромосом. Благодаря этим эффектам они служат источником генетических новшеств. Они дают возможность эукариотической клетке справляться с условиями новых сред, не изменяя своего основного набора хромосом, т.е. нормального их комплемента, подобно тому, как бактериальная клетка использует свои плазмиды, оставляя собственную хромосому относительно неизменной.
У эукариотической клетки есть другие способы противостоять среде. Амплификация генов была первоначально обнаружена и широко изучалась в ооцитах сверчка Acheta и амфибии Xenopus. Создание более тонких методов позволило обнаружить это явление в соматических клетках, выращиваемых в стрессовых условиях. Эти генные амплификации наблюдаются относительно часто в клетках млекопитающих, выращиваемых в культуре, и затрагивают многие гены, в частности гены дигидрофолатредуктазы, металлотионеина, глутаминсинтетазы, орнитиндекарбоксилазы и других. Примером служат клетки легкого китайского хомячка, которые выращивали в среде, содержавшей хлорид кадмия и опухолеродные вещества. Число генов металлотионеина увеличилось в этих клетках в пять раз, повысилось и содержание мРНК. Клетки избегают действия неблагоприятных условий, создаваемых химическими факторами, изменяя число генов и количество мРНК для многих последовательностей ДНК.