Исследование процесса физиологической адаптации бактерий к тяжёлой воде
Изучен процесс физиологической адаптации различных бактериальных штаммов-продуцентов аминокислот, белков и нуклеозидов, относящимся к различным таксономическим группам микроорганизмов (факультативные и облигатные метилотрофные бактерии - Brevibacterium methylicum и Methylobacilus flagellatum, галофильные бактерии - Halobacterium halobium и бациллы - Bacillus subtilis) к росту и биосинтезу необходимых соединений на средах, содержащих максимальные концентрации тяжёлой воды. В работе сообщается о методе, который заключается в многоступенчатой адаптации бактерий к дейтерию путём рассева их на средах, содержащих возрастающие концентрации 2Н2O и с последующей селекцией отдельных колоний, выросших на этих средах. В результате применения данного подхода среди исследуемых бактерий были отобраны отдельные штаммы, сохранившие высокие ростовые и биосинтетические способности при росте на 2H2О. Представлены данные по росту и адаптации исследуемых штаммов бактерий как на минимальных средах, содержащих в качестве источников дейтерия 2H2О, (2H)метанол так и на комплексных средах, содержащих (2Н)биомассу метилотрофных бактерий B. methylicum, полученную в ходе многоступенчатой адаптации к 2H2O. Для данных штаммов при росте на 2Н2О изучен качественный и количественный состав внутриклеточных аминокислот, сахаров и липидов.
Ключевые слова: тяжёлая вода; aдаптация; биосинтез
ВВЕДЕНИЕ
В настоящее время во всем мире растет интерес к получению природных соединений, меченных стабильными изотопами (2Н, 13С, 15N, 18O и другие), которые необходимы для разнопрофильных биохимических и диагностических целей, структурно-функциональных исследований, а также для изучения процессов метаболизма клетки [1-5]. Тенденции к применению стабильных изотопов по сравнению с их радиоактивными аналогами обусловлены отсутствием радиационной опасности и возможностью определения локализации метки в молекуле методами высокого разрешения: спектроскопией ЯМР [6, 7], инфракрасной [8, 9] и лазерной спектроскопией [10], масс-спектрометрией [11]. Это позволило за последние годы повысить эффективность проведения многочисленных биологических исследований de novo, а также изучать структуру и механизм действия биологически активных соединений (БАС) на молекулярном уровне. Большое значение в этом аспекте имеют природные соединения, содержащие дейтериевую метку, которые удобнее всего получать с использованием микроорганизмов. Именно поэтому разработка путей препаративного получения дейтериймеченых БАС является актуальной задачей для современной биотехнологии. Стоимость биотехнологически полученных изотопномеченых соединений водорода значительно ниже, чем химически синтезированных, что представляет интерес для поиска новых штаммов-продуцентов БАС, устойчивых к высоким концентрациям дейтерия в ростовых средах и для дальнейшего изучения их свойств.
С развитием новых биотехнологических подходов появилась возможность использовать полученные в результате мутагенеза или генной инженерии штаммы-продуценты для направленного синтеза дейтериймеченых соединений [12, 13]. Традиционным подходом при этом остаётся культивирование бактерий на средах, содержащих максимальные концентрации тяжёлой воды или других дейтерированных субстратов, например, [U- 2Н]метанола [14-17]. Однако подобные процессы редко применяются в биотехнологии, вследствие наличия ряда трудностей, связанных с адаптацией и культивированием микроорганизмов на средах с максимальными концентрациями 2H2О. Поэтому целый ряд вопросов, которые касаются принципиальной возможности использования различных штаммов-продуцентов БАС для роста и биосинтеза на высокодейтерированных средах, остаются до конца невыясненными.
Важной проблемой, требующей скорейшего разрешения, является изучение процессов физиологической адаптации клетки к 2H2О. Известно, что высокие концентрации 2H2О в ростовой среде могут вызвать ингибирование жизненно-важных функций роста и развития многих микроорганизмов [18]. Несмотря на негативный биостатический эффект, оказываемый тяжёлой водой на клетки, некоторые бактерии устойчивы к высоким концентрациям тяжёлой воды в среде [19], в то время как растительные клетки могут нормально развиваться при концентрациях не более 50-75% 2H2О [20], а клетки животных не более 35% 2H2О [21]. Явление адаптации к 2H2О интересно не только само по себе, но оно также позволяет получать уникальный биологический материал, очень удобный для решения задач молекулярной организации клетки с помощью метода ЯМР-спектроскопии. Эти данные послужили основой для выбора объектов исследования в наших экспериментах. Ими являлись генетически маркированные штаммы-продуценты аминокислот, белков и нуклеозидов, относящиеся к различным таксономическим родам микроорганизмов: факультативные метилотрофные бактерии Brevibacterium methylicum, облигатные метилотрофные бактерии Methylobacillus flagellatum, галофильные бактерии Halobacterium methylicum и бациллы Bacillus subtilis.
Целью настоящей работы было исследование процесса физиологической адаптации этих продуцентов БАС при росте на средах, содержащих максимальные концентрации тяжёлой воды. Поскольку биосинтетический потенциал используемых штаммов при росте на тяжелой воде к началу проведения данной работы был изучен недостаточно, представляло интерес исследование их способности к синтезу целевых продуктов в условиях максимально дейтерированных сред. Исследования по адаптации к 2H2O метилотрофных бактерий B. methylicum заложили основу для использования компонентов их (2Н)меченой биомассы, полученной в ходе многоступенчатой адаптации к 2H2O в качестве ростовых факторов для культивирования других микробных продуцентов БАС.
МАТЕРИАЛЫ И МЕТОДЫ
Объектами исследования служили генетически маркированные штаммы-продуценты аминокислот, белков и нуклеозидов, полученные из Всероссийской коллекции промышленных микроорганизмов (ВКПМ) Государственного научно-исследовательского института генетики и селекции промышленных микроорганизмов:
1. Brevibacterium methylicum ВКПМ В 5652, лейцинзависимый штамм факультативных метилотрофных бактерий, продуцент фенилаланина.
2. Methylobacillus flagellatum КТ, изолейцинзависимый штамм облигатных метилотрофных бактерий, продуцент лейцина.
3. Bacillus subtilis В-3157, полиауксотрофный по гистидину, тирозину, аденину и урацилу штамм грамотрицательных бактерий, продуцент инозина.
4. Halobacterium halobium ЕТ 1001, пигментсодержащий штамм галофильных бактерий, способный синтезировать бактериородопсин.
Для приготовления питательных сред и адаптации бактерий использовали 2H2O (99.9% 2H), и 2HСl (95.5% 2H) и [U- 2Н]метанол (97.5% 2H), полученные из Российского научно-исследовательского центра “Изотоп” (Санкт-Петербург, РФ). По необходимости 2H2O очищали от вредных примесей, перегоняя её над перманганатом калия [22].
Стартовым материалом для культивирования галофильных бактерий и бацилл служила (2Н)меченая биомасса метилотрофных бактерий, полученная в условиях многостадийной адаптации на твердых агаризованных средах (2% агар) с 2% [U- 2Н]метанолом, содержащих ступенчато увеличивающиеся концентрации тяжёлой воды (от 0 до 98% 2Н2О). Полученную таким образом (2Н)меченую биомассу B. methylicum (выход составил 100 г по влажному весу с 1 л. среды) автоклавировали в 0.5 н. растворе 2HСl (в 2H2O) (08 ати, 30 мин), нейтрализовали 0.1 н. КОН (рН 7.0) и использовали далее в качестве источника ростовых факторов для адаптации и культивирования бацилл и галофильных бактерий.