Изучение мутационного процесса
Рефераты >> Биология >> Изучение мутационного процесса

Изучение мутационного процесса стало важной отраслью современной генетики. С помощью мутагенов ученые получают нужные им организмы, которые затем используются в селекционной работе. Практически все микробы—продуценту антибиотиков, витаминов, других биологических активных веществ — получены с помощью мутагенной обработки. Мутанты все чаще используют в селекции растений. Так открытие Коржинского и де Фриза было поставлено на службу человека.

Стала выясняться и молекулярная основа мутаций.

Природа молекулярных изменений генов во время мутагенеза оставалась туманной до появления гипотезы Уотсона и Крика относительно структуры ДНК. Уже в этой гипотезе содержалось зерно будущих представлений о том, что обусловливает возникновение мутаций. По мысли авторов замена одного из нуклеотидов в паре аденин — тимин или гуанин—цитозин на не комплементарного партнера должна была привести к изменению генетической записи. Однако конкретная модель мутагенных изменений была предложена в 1959 г. Эрнстом Фризом и развита им в последующие 3—4 года.

Фриз предположил, что все случаи точечных мутаций с точки зрения их молекулярной природы можно разделить на два основных типа: простые и сложные замены. При простых заменах происходит замена пуринового основания пуриновым (например, место гуанина занимал аденин), а пиримидинового — пиримидиновым (замена тимина цитозином и наоборот). При сложной замене пуриновое основание заменяется пиримидиновым и наоборот. В настоящее время более распространенными являются термины транзиция (для простых замен) и трансверсия (для сложных замен).

Переход к генетическим исследованиям микроорганизмов совершившийся сразу после второй мировой войны, дал возможность колоссально увеличить разрешающую способность генетических методов. Это удобство работы с микробами, когда в руках исследователя в одном опыте может оказаться до миллиарда легко учитываемых особей, сказалось прежде всего в исследовании молекулярных механизмов мутагенеза Э. Фриз и его коллеги сумели быстро доказать, что подавляющее большинство мутаций является точечными. Этим на молекулярном уровне было подтверждено правило, впервые высказанное еще в 1926 г. русским генетиком С. С. Четвериковым. Наряду с этим в классификации Э. Фриза сохранились такие типы мутаций, которые были ранее описаны в классической генетике как делеция (утеря части гена), дупликация (удвоения частей генов или даже целых генов), инверсия (переворот на 180° участков генов), транслокация (перемещение генов). Развитие работ по генетике бактериофагов позволило доказать наличие ряда таких мутаций и прежде всего делеций.

Однако в своей трактовке молекулярной природы точечных мутаций Фриз не учел того, что наряду с транзициями и трансверсиями могут быть мутации, изменяющие количество оснований в гене. Этот промах был исправлен Кембриджской школой молекулярных генетиков, которые в 1961 г. сначала предсказали (Бреннер, Барнет, Крик и Оргель), а затем экспериментально доказали, что наряду с заменами существуют такие точечные мутации, когда один или несколько нуклеотидов внедряются или, наоборот, выпадают из структуры ДНК. Такие мутации изменяют чтение всего последующего участка гена от точки изменения, и они получили название «мутации сдвига чтения».

Исключительно важными для молекулярной теории мутагенеза оказались работы по изучению аминокислотных замен в мутантных белках, выполненные на моделях бактериальных и растительных вирусов и белков кишечной палочки.

Наконец, в последнее время появилась надежда с молекулярных позиций объяснить загадку возникновения полных и мозаичных мутаций. Долгое время генетики не могли представить убедительных объяснений, почему в некоторых случаях поврежденными оказываются сразу обе нити ДНК (полная мутация), в то время как в других случаях изменению подвергается только одна из нитей (мозаичная мутация). Открытие ферментных систем, исправляющих повреждения ДНК, нанесенные физическими и химическими агентами, и выяснение молекулярного механизма их действия позволило обосновать тезис о том, что именно репарирующие системы переносят повреждение с одной нити ДНК на другую ее нить, вызывая появление полной мутации (Н. П. Дубинин и В. Н. Сойфер). Этот же принцип был использован для объяснения причин появления хромосомных, а не хроматидных мутаций стадии G1, когда ДНК хромосом остается не реплицирующейся при воздействии на клетки агентами, вызывающими репарируемые повреждения.

В первых же экспериментах по изучению действия радиации наследственные структуры — хромосомы было обнаружено, что хромосомы могут разрываться, образуя фрагменты. Впоследствии разрывы хромосом были описаны и в тех случаях, когда организмы или отдельные клетки обрабатывали химическими мутагенами. Но природа возникновения разрывов, оставалась непонятной до самого последнего времени.

В жизненном цикле клетки можно отметить следующие основные этапы: в фазе G1 клетка готовится к удвоению ее генетических структур. В этой фазе хромосомы большинства клеток содержат одну двунитевую молекулу ДНК. В фазе S происходит удвоение генетического материала — репликация молекул ДНК, и клетки вступают в фазу G2, когда их хромосомы содержат уже две копии — хроматиды, каждая из которых несет по одной двунитевой молекуле.

В результате многочисленных работ по изучению химии взаимодействия мутагенов с ДНК было установлено, что, как правило, повреждению подвергается только одна нить ДНК, а другая остается неповрежденной. Если это так, то ДНК, поврежденная в фазе G1 или G2, могла бы нести только хроматидные мутации. После репликации повреждение одной нити ДНК передалось бы ее дочерней копии — хроматиде, а вторая хроматида, синтезированная на неповрежденной нити ДНК, оставалась бы нормальной. Однако в экспериментах было найдено, что нередко повреждение захватывает обе нити ДНК и обе хроматиды сразу. В этом и заключалась основная трудность в понимании природы мутагенеза. В 1968 г. Н. П. Дубининым и В. Н. Сойфером была предложена модель, объясняющая эту основную трудность и позволяющая понять молекулярный механизм этого явления.

За последние годы были открыты особые ферментные системы, следящие за сохранением целостности генетического материала клетки и названные репарирующими системам. Наибольший интерес представляют ферменты так называемой темновой репарации.

Если в ДНК возникает повреждение, которое может быть узнано репарирующими ферментами, то прежде всего происходит надрез ДНК вблизи места повреждения. Вслед за этим участок, заключающий в себе повреждение, вырезается из структуры ДНК, а образовавшаяся брешь расширяется подобно тому, как при операциях хирурги вычищают некоторый участок здоровой ткани вокруг удаленного повреждения. Два последующих этапа — застройка образованной бреши здоровым материалом и соединение застроенного участка со старой нитью ДНК. Такая репарация может происходить на любой стадии клетки и, что самое главное, — в отсутствие репликации ДНК.

В 1968 г. два американских исследователя Фрэд Рапп и Пауль Говард-Фландерс экспериментально показали, что при некоторых типах поражения ДНК (при соединении двух рядом расположенных в ДНК тиминовых остатков в так называемый димер тимина), против них при синтезе ДНК остается настроенная брешь, и эта брешь оказывается долго живучи Таким образом, система «повреждение — оппозитная брешь» может существовать в ДНК длительное время.


Страница: