Зрительные пигменты
Содержание
Зрительные пигменты
Поглощение света зрительными пигментами
Строение родопсина
Колбочки и цветовое зрение
Цветовая слепота
Свойства каналов фоторецептора
Молекулярная структура цГМФ-управляемых каналов
Передача сигнала в фоторецепторах
Метаболический каскад циклического ГМФ
Рецепторы позвоночных, деполяризующиеся при действии света
Усиление сигнала в каскаде цГМФ
Сигналы в ответ на одиночные кванты света
Литература
Зрительные пигменты
Зрительные пигменты сконцентрированы в мембранах наружных сегментов. Каждая палочка содержит около 108 молекул пигмента. Они организованы в несколько сотен дискретных дисков (около 750 в палочке обезьян), которые не связаны с наружной мембраной. В колбочках пигмент расположен в особых пигментных складках, которые являются продолжением наружной клеточной мембраны фоторецептора. Молекулы пигмента составляют около 80% всех белков диска. Зрительные пигменты настолько плотно упакованы в мембранах наружного сегмента, что расстояние между двумя молекулами зрительного пигмента в палочке не превышает 10 нм. Такая плотная упаковка повышает вероятность того, что фотон света при прохождении слоя фоторецепторных клеток будет уловлен. Возникает следующий вопрос: каким образом возникают сигналы при поглощении света зрительными пигментами?
Поглощение света зрительными пигментами
События, происходящие при поглощении света пигментом палочек - родопсином, изучались при помощи психофизиологических, биохимических и молекулярных методик. Молекула зрительного пигмента состоит из двух компонентов: белковой, называемой опсином, и хромофора, 11-цис-витамин А-альдегида, называемого ретиналем (рис.1). Следует уточнить, что хромофор содержит химическую группу, придающую цвет соединению. Количественные характеристики поглощающей способности пигментов были изучены при помощи спектрофотометрии. При освещении родопсина - зрительного пигмента палочек - светом разной длины волны, сине-зеленый свет с длиной волны около 500 нм поглощался лучше всего. Подобный результат был получен и при освещении отдельной палочки под микроскопом пучками света с разной длиной волн. Была выявлена интересная зависимость между спектром поглощения родопсина и нашим восприятием сумеречного света. Количественные психофизические исследования, выполненные на человеке, показали, что голубовато-зеленый дневной свет с длиной волны около 500 нм оптимален для восприятия сумеречного света в темноте. Днем, когда палочки неактивны и используются только колбочки, мы наиболее чувствительны к красному цвету, соответствующему спектру поглощения колбочек (об этом мы поговорим далее).
При поглощении родопсином одного фотона ретиналь претерпевает фотоизомеризацию и переходит из 11-цис в транс-конфигурацию. Этот переход происходит очень быстро: примерно за 10--12 секунд. После этого белковая часть пигмента также претерпевает серию трансформационных изменений, с образованием ряда промежуточных продуктов. Одна из конформаций протеиновой части - метародопсин II - наиболее важна для передачи сигнала (мы обсудим это далее в этой главе). На рис.2 показана последовательность событий при обесцвечивании и регенерации активного родопсина. Метародопсин II образуется уже через 1 мс. Регенерация пигмента после его распада происходит медленно, в течение нескольких минут; для этого необходимо транспортирование ретиналя из фоторецепторов в пигментный эпителий.
Строение родопсина
На молекулярном уровне белок опсин состоит из 348 аминокислотных остатков, образующий 7 гидрофобных зон, каждая из которых состоит из 20-25 аминокислот, составляя 7 трансмембранных спиралей. Ν-конец молекулы расположен во внеклеточном пространстве (т.е. внутри диска палочки), а С-конец находится в цитоплазме.
Рис.1. Структура родопсина позвоночных, встроенного в мембрану фоторецептора. Спираль несколько развернута, чтобы показать расположение ретиналя (указано черным). С - С-конец, N - N-конец.
Рис.2. Выцветание родопсина на свету. В темноте 11-цис-ретиналь прочно связан с белком опсином. Захват фотона приводит к изомеризации all цис ре тиналя в троне ретиналь. При этом комплекс опсин all-тронс-ретиналь быстро превращается в метародо псин II, который диссоциирует на опсин и all троне ретиналь. Регенерация родопсина зависит от взаимодействия фоторецепторов и клеток пигментного зпителия. Метародопсин II включает и поддерживает в активном состоянии систему вторичных посредников.
Ретиналь соединен с опсином через остаток лизина, расположенный в седьмом трансмембранном сегменте. Опсин принадлежит к семейству белков, имеющих 7 трансмембранных доменов, в которое входят и метаботропные рецепторы медиаторов, такие как адренергические и мускариновые рецепторы. Как и родопсин, эти рецепторы передают сигнал ко вторичным посредникам посредством активации G-белка. Родопсин удивительно стоек в темноте. Байор подсчитал, что для спонтанной тепловой изомеризации молекулы родопсина необходимо около 3000 лет, или в 1023 больше, чем для фотоизомеризации.
Колбочки и цветовое зрение
Удивительные исследования и эксперименты, выполненные Янгом и Гельмгольцем в XIX веке, привлекли внимание к очень важному вопросу о цветном зрении, и сами же ученые дали четкое и точное объяснение этому феномену. Их вывод о существовании трех различных типов цветовых фоторецепторов выдержал испытание временем и был в последующем подтвержден на молекулярном уровне. Вновь можно процитировать Гельмгольца, который сравнил восприятие света и звука, цвета и звукового тона. Можно позавидовать ясности, силе и красоте его мысли, особенно в сравнении со сбивающими с толку виталистистическими концепциями, широко распространенными в XIX веке:
Все различия е цветовых тонах зависят от комбинации е различных пропорциях трех основных цветов . красного, зеленого и фиолетового . Подобно тому, как восприятие нани солнечного света и его теплоты зависит . от того, попадают ли лучи солнца на нервы, идущие от рецепторов зрения или от рецепторов тепловой чувствительности. Как предположил Янг в своей гипотезе, различие в восприятии различных цветов зависит просто от того, какой из 3 типов фоторецепторов больше активируется этим светом. Когда все три типа в равной степени возбуждены, получается белый цвет .
Рис. 3. Спектры чувствительности фоторецепторов человека и различных зрительных пигментов. (А) Кривые спектров чувствительности трех цветовых зрительных пигментов, показывающие пики поглощения на длинах волн, соответствующих голубому, зеленому и красному. (В) Спектры чувствительности колбочек к голубому, зеленому и красному цветам, и палочек (показано черным) у макак. Ответы регистрировались при помощи всасывающих электродов, усреднялись и нормализовывались. Кривые спектра палочки были получены при исследовании зрительных пигментов на людях. (С) Сравнение спектров колбочек обезьян и человека при помощи теста чувствительности к цвету. Непрерывная кривая показывает эксперимент по определению чувствительности к цвету у человека, при предъявлении ему света разной длины волны. Пунктиром показаны результаты, предсказанные на основе регистрации токов в отдельных колбочках, после коррекции поглощения света в хрусталике и пигментами на пути к наружному сегменту. Совпадение между результатами обоих опытов удивительно высокое.