Зародыши и предки
Гипотеза Моно, даже не доведенная до крайности, неприемлема в качестве модели развития. И эволюцией структурных генов нельзя объяснить морфологическую эволюцию. Исследования Вилсона (Wilson А. С.) и его сотрудников показывают, что - во всяком случае применительно к таким ныне живущим группам организмов, как лягушки и млекопитающие, - эволюция структурных генов, кодирующих белки, имеет мало отношения к морфологической эволюции. Человек и шимпанзе быстро дивергировали морфологически, однако аминокислотные последовательности их белков на 99% одинаковы. В отличие от них у такой более древней группы, как лягушки, морфологическая эволюция протекает довольно медленно, но скорость эволюции их аминокислотных последовательностей сравнима с аналогичными скоростями у других организмов. На основании этих фактов Кинг (King) и Вилсон высказали предположение, что в основе морфологической эволюции, по всей вероятности, лежат изменения не структурных, а регуляторных генов.
Поскольку существует целая иерархия взаимодействующих контрольных механизмов, управляющих экспрессией генов и онтогенезом, регуляторные гены распадаются на ряд категорий, и дать им общее определение, как некой единой группе, труднее, чем определить структурные гены. Можно сказать, что в основном структурные гены обеспечивают поставку материалов, необходимых для развития, а регуляторные гены поставляют и расшифровывают рабочие чертежи. Структурные гены относительно легко исследовать, так как продукты, синтез которых они кодируют, нетрудно выделить, исследовать и определить их функции. Не удивительно, что найти подход к изучению регуляторных генов оказалось сложнее. Некоторые регуляторные гены или элементы не образуют никаких продуктов; другие образуют их, но лишь в чрезвычайно малых количествах. Наиболее хорошо известный пример - белок lac-репрессора (Е. coli); этот продукт одного из регуляторных генов контролирует экспрессию генов, определяющих метаболизм лактозы. В одной бактериальной клетке содержится всего 10 молекул репрессора.
Регуляторные гены функционируют на протяжении всего процесса развития, управляя онтогенезом тремя различными способами: во-первых, регулируя время наступления тех или иных событий; во-вторых, делая выбор из двух возможностей и тем самым определяя судьбу клеток или частей зародыша; в-третьих, интегрируя экспрессию структурных генов, с тем чтобы обеспечить создание стабильных дифференцированных тканей. Все эти три способа регуляции играют большую роль в эволюции.
Роль изменений в сроках наступления различных событий в процессе развития как важного и гибкого механизма для достижения существенной морфологической эволюции рассматривали де Бер (de Beer) в своем ценном труде «Зародыши и предки», а позднее Гулд (Gould) в книге «Онтогенез и филогенез». Эти авторы уделяли внимание не столько механизмам, осуществляющим генетическую регуляцию процессов развития, сколько определению типов возможных изменений в сроках событий, происходящих в онтогенезе, и демонстрации их эволюционных последствий. Различные эволюционные изменения рассматривались ими как последствия изменения этих сроков. Чаще всего в качестве таких примеров приводятся случаи неотении - возникновение новых планов строения взрослого организма в результате достижения личиночными стадиями половозрелости и утраты предковой взрослой стадии.
Генетическая регуляция онтогенеза не ограничена, однако, воздействием на продолжительность процессов развития. Недавними работами, в особенности на плодовой мушке Drosophila melanogaster, ставшей для исследователей структуры и функции генов за это десятилетие чем-то вроде эукариотической Е. coli, установлено, что организация развивающегося зародыша контролируется целой иерархией регуляторных генов. Эти гены действуют как переключатели, от которых зависит, по какому из двух альтернативных путей развития пойдет данная клетка или группа клеток. После того как решение принято, возможности клеток в смысле дальнейшего выбора оказываются ограниченными, и их судьба в процессе развития становится все более и более определенной. Регуляторные гены такого типа доступны изучению благодаря очень ярко выраженным эффектам, которыми сопровождаются мутации этих генов, лишающие их функции двоичных переключателей или изменяющие эту функцию. У дрозофилы эти так называемые гомеозисные мутации вызывают трансформации, которые изменяют характер морфогенеза и приводят к замене одной структуры другой, например к возникновению ног вместо антенн или добавочных крыльев вместо жужжалец. Изменение наборов регуляторных генов этого класса или возникновение новых таких наборов создает значительные потенциальные возможности для радикальных эволюционных модификаций или возникновения новых морфологических структур. Подобно изменениям регуляторных генов, влияющих на сроки или структурную интеграцию, изменения регуляторных генов, контролирующих тканевую дифференцировку, также обладают большим эволюционным потенциалом. Если изменения регуляторных генов двух первых типов вызывают изменения формы органов, то изменения генов этого третьего типа приводят к образованию новых тканей. Все это сыграло чрезвычайно важную роль в эволюции размножения млекопитающих и заботы о потомстве. Три способа регуляции развития, которые мы здесь бегло рассмотрели, неотделимы друг от друга. Все они участвовали в морфологической эволюции отдельных групп организмов. Быть может, главная трудность, с которой мы сталкиваемся в нашей попытке понять морфологическую эволюцию в контексте эмбриогенетических механизмов, заключается в том, что формообразование на молекулярном уровне изучено крайне плохо. Дело здесь не только в том, что у нас мало сведений о самих механизмах морфогенеза (перемещения клеток, их взаимодействия, возникновение структурной организации), но и в различных концептуальных подходах к оценке информации, содержащейся в морфологической структуре, и в оценке генетической информации. В качестве иллюстрации этого различия рассмотрим морфогенез не с точки зрения молекулярной генетики, а воспользуемся подходом Д'Арси Томпсона (D'Arcy Thompson), который в своей книге «О росте и форме» (ее первое издание вышло в 1917 г.) впервые применил математику к проблемам формы. Его цель была проста: «Мы хотим понять, как можно объяснить, по крайней мере в некоторых случаях, форму живых существ и частей живых существ, исходя из физических представлений, и установить, что органических форм, которые противоречили бы физическим и математическим законам, не существует». Томпсон изложил свою точку зрения в книге, которая изучалась несколькими поколениями биологов, познакомившихся с ее помощью с математическими законами, лежащими в основе формы поверхностей раздела между клетками и строения радиолярий или спирально закрученных раковин и бараньих рогов; с тем, почему скелет позвоночных и мосты построены в соответствии с одними и теми же инженерными законами, и как, используя преобразования декартовых координат, можно изображать эволюционные изменения формы таких сложных объектов, как черепа, рыбы и изоподы (равноногие рачки). Томпсон снял покров непроницаемой тайны с биологической формы и очень изящно показал, что сложные биологические объекты подчиняются физическим и математическим правилам, поддающимся проверке. Однако он уделял мало внимания событиям, происходящим на генетическом или молекулярном уровне (вероятно, это было разумно, потому что эти события и сейчас еще не вполне поняты), а вместо этого сосредоточился на действующих на организм физических силах как непосредственных факторах, определяющих его морфологию.