Гены управляют поведением, а поведение — генами
Журнал Science опубликовал серию обзорных и теоретических статей, посвященных взаимосвязи генов и поведения. Последние данные генетики и нейробиологии указывают на сложность и неоднозначность этой взаимосвязи. Гены влияют даже на такие сложные аспекты человеческого поведения, как семейные и общественные взаимоотношения и политическая деятельность. Однако существует и обратное влияние поведения на работу генов и их эволюцию.
Гены влияют на наше поведение, но их власть не безгранична
Хорошо известно, что поведение во многом зависит от генов, хотя о строгом детерминизме в большинстве случаев говорить не приходится. Генотип определяет не поведение как таковое, а скорее общее принципы построения нейронных контуров, отвечающих за обработку поступающей информации и принятие решений, причем эти «вычислительные устройства» способны к обучению и постоянно перестраиваются в течение жизни. Отсутствие четкого и однозначного соответствия между генами и поведением вовсе не противоречит тому факту, что определенные мутации могут менять поведение вполне определенным образом. Однако необходимо помнить, что каждый поведенческий признак определяется не одним-двумя, а огромным множеством генов, работающих согласованно. Например, если обнаруживается, что мутация в каком-то гене приводит к потере дара речи, это не значит, что «ученые открыли ген речи». Это значит, что они открыли ген, который наряду с множеством других генов необходим для нормального развития нейронных структур, благодаря которым человек может научиться разговаривать.
Этот круг тем составляет предмет генетики поведения. В обзорных статьях, опубликованных в последнем номере журнала Science, приведен ряд ярких примеров того, как изменения отдельных генов могут радикально менять поведение. Например, еще в 1991 году было показано, что, если пересадить небольшой фрагмент гена period от мухи Drosophila simulans другому виду мух (D. melanogaster), трансгенные самцы второго вида начинают во время ухаживания исполнять брачную песенку D. simulans.
Другой пример — ген for, от которого зависит активность поиска пищи у насекомых. Ген был впервые найден у дрозофилы: мухи с одним вариантом этого гена ищут корм активнее, чем носители другого варианта. Тот же самый ген, как выяснилось, регулирует пищевое поведение пчел. Правда, тут уже играют роль не различия в структуре гена, а активность его работы (см. ниже): у пчел, собирающих нектар, ген for работает активнее, чем у тех, кто заботится о молоди в улье. Как получилось, что один и тот же ген сходным образом влияет на поведение у столь разных насекомых, имеющих совершенно разный уровень интеллектуального развития? Четкого ответа на этот вопрос пока нет. Ниже мы столкнемся и с другими примерами удивительного эволюционного консерватизма (устойчивости, неизменности) молекулярных механизмов регуляции поведения.
Эффект Болдуина: обучение направляет эволюцию
Взаимоотношения между генами и поведением вовсе не исчерпываются однонаправленным влиянием первых на второе. Поведение тоже может влиять на гены, причем это влияние прослеживается как в эволюционном масштабе времени, так и на протяжении жизни отдельного организма.
Изменившееся поведение может вести к изменению факторов отбора и, соответственно, к новому направлению эволюционного развития. Данное явление известно как «эффект Болдуина» (Baldwin effect) — по имени американского психолога Джеймса Болдуина, который впервые выдвинул эту гипотезу в 1896 году. Например, если появился новый хищник, от которого можно спастись, забравшись на дерево, жертвы могут научиться залезать на деревья, не имея к этому врожденной (инстинктивной) предрасположенности. Сначала каждая особь будет учиться новому поведению в течение жизни. Если это будет продолжаться достаточно долго, те особи, которые быстрее учатся залезать на деревья или делают это более ловко в силу каких-нибудь врожденных вариаций в строении тела (чуть более цепкие лапы, когти и т. п.), получат селективное преимущество, то есть будут оставлять больше потомков. Следовательно, начнется отбор на способность влезать на деревья и на умение быстро этому учиться. Так поведенческий признак, изначально появлявшийся каждый раз заново в результате прижизненного обучения, со временем может стать инстинктивным (врожденным) — изменившееся поведение будет «вписано» в генотип. Лапы при этом тоже, скорее всего, станут более цепкими.
Другой пример: распространение мутации, позволяющей взрослым людям переваривать молочный сахар лактозу, произошло в тех человеческих популяциях, где вошло в обиход молочное животноводство. Изменилось поведение (люди стали доить коров, кобыл, овец или коз) — и в результате изменился генотип (развилась наследственная способность усваивать молоко в зрелом возрасте).
Эффект Болдуина поверхностно схож с ламарковским механизмом наследования приобретенных признаков (результатов упражнения или неупражнения органов), но действует он вполне по-дарвиновски: через изменение вектора естественного отбора. Данный механизм очень важен для понимания эволюции. Например, из него следует, что по мере роста способности к обучению эволюция будет выглядеть всё более «целенаправленной» и «осмысленной». Он также позволяет предсказать, что в развитии интеллекта может возникнуть положительная обратная связь: чем выше способность к обучению, тем выше вероятность, что начнется отбор на еще большую способность к обучению.
Социальное поведение влияет на работу генов
Поведение влияет также и на работу генов в течение жизни организма. Эта тема подробно развивается в статье Джина Робинсона (Gene E. Robinson) из Иллинойского университета (University of Illinois at Urbana-Champaign) с соавторами. В работе рассматривается взаимосвязь между генами и социальным поведением животных, причем особое внимание уделено тому, как социальное поведение (или социально-значимая информация) влияет на работу генома. Это явление начали в деталях исследовать сравнительно недавно, но ряд интересных находок уже сделан.
Когда самец зебровой амадины (Taeniopygia guttata) — птицы из семейства ткачиковых — слышит песню другого самца, у него в определенном участке слуховой области переднего мозга начинает экспрессироваться (работать) ген egr1. Этого не происходит, когда птица слышит отдельные тона, белый шум или любые другие звуки — это специфический молекулярный ответ на социально-значимую информацию.
Песни незнакомых самцов вызывают более сильный молекулярно-генетический ответ, чем щебет старых знакомцев. Кроме того, если самец видит других птиц своего вида (не поющих), активация гена egr1 в ответ на звук чужой песни оказывается более выраженной, чем когда он сидит в одиночестве. Получается, что один тип социально-значимой информации (присутствие сородичей) модулирует реакцию на другой ее тип (звук чужой песни). Другие социально-значимые внешние сигналы приводят к активации гена egr1 в других участках мозга.
Как ни странно, тот же самый ген играет важную роль в социальной жизни у рыб. «Элементы» уже писали о сложной общественной жизни и недюжинных умственных способностях аквариумной рыбки Astatotilapia burtoni (см.: Рыбы обладают способностью к дедукции, «Элементы», 30.01.2007). В присутствии доминантного самца-победителя подчиненный самец блекнет и не проявляет интереса к самкам. Но стоит удалить высокорангового самца из аквариума, как подчиненный стремительно преображается, причем меняется не только его поведение, но и окраска: он начинает выглядеть и вести себя как доминант. Преображение начинается с того, что в нейронах гипоталамуса включается уже знакомый нам ген egr1. Вскоре эти нейроны начинают усиленно производить половой гормон (gonadotropin-releasing hormone, GnRH), играющий ключевую роль в размножении.