Выделение, изучение свойств микроорганизмов и их использование для выполнения подготовительных процессов переработки овчинно-мехового сырья
Рефераты >> Биология >> Выделение, изучение свойств микроорганизмов и их использование для выполнения подготовительных процессов переработки овчинно-мехового сырья

Исследовали способность разрушать алкилсульфаты также у зеленых водорослей рода Chlorella. О роли водорослей в биоразложении ПАВ данных в литературе мало. В то же время вопрос взаимодействия водорослей и ПАВ чрезвычайно важен, поскольку водоросли в большом количестве развиваются в биофильтрах и окислительных прудах, которые используются для биологической очистки сточных вод. Кроме того, значительный интерес представляет изучение водорослей в процессах самоочищения водоемов от ПАВ. В работе Девиса и Глойне /63/ сделана попытка изучить деструктивную способность водорослей и показано, что все взятые в опыт водорослевые культуры слабо разлагают некоторые анионактивные и неионогенные ПАВ. Однако отсутствие контроля бактериального загрязнения ставит под сомнение полученные авторами результаты.

В опытах /64/ исследовались три бактериально чистые культуры зеленых водорослей рода Chlorella: Chl. Vulgaris, штаммы 62 и М, и Chl. pyrenoidosa. Chl. vulgaris M выделена из сточных вод Магнитогорского металлургического комбината, две другие культуры получены в отделе регуляторных механизмов клетки Института молекулярной биологии и генетики АН УССР. Культуры Chl. vulgaris 62 и Chl. vulgaris M выращивали в люминостате при температуре 22–240 и освещенности 3000 лк на модифицированной жидкой и агаризованной среде Тамия. Адаптированный к гетеротрофному способу питания штамм Chl. pyrenoidosa выращивали в темноте в термостате при температуре 26–280 на жидкой и агаризованной среде ФДГА. При изучении влияния ДДС на водоросли к агаризованным средам Тамия и ФДГА добавляли от 1 до 200 мг/л соединения. Через 5–6 суток отмечали наличие или отсутствие роста водорослевых культур. Способность водорослей разрушать ДДС изучали на аналогичных жидких средах с ПАВ. О влиянии ДДС на водоросли в жидких средах судили по приросту биомассы, подсчитывая общее число клеток хлореллы в камере Горяева, и по соотношению живых и мертвых клеток. С целью выявления возможного бактериального загрязнения водорослей культуральную жидкость при каждом отборе проб высевали на МПА и агаризованные среды Тамия и ФДГА с ДДС. При выращивании водорослевых культур на агаризованных средах 1–50 мг/л вещества не оказывают неблагоприятного влияния на их рост. В присутствии 100 мг/л ПАВ отмечено угнетение роста, особенно у автотрофных штаммов. При выращивании на соответствующей жидкой среде с 50 мг/л ДДС автотрофные штаммы Chl. vulgaris 62 и Chl. vulgaris M дают значительно меньший прирост биомассы и более высокий процент мертвых клеток по сравнению с контролем без ПАВ. Концентрация ДДС в культуральной среде этих водорослей не изменяется. В отличие от двух других штаммов Chl. pyrenoidosa дает практически одинаковый прирост биомассы в контроле и опытном варианте, где вместо глюкозы в среду вносили 50 мг/л ПАВ. При этом в среде с ДДС существенно повышается число мертвых клеток. В то же время добавление к полноценной среде ФДГА додецилсульфата натрия в концентрациях 50 и 100 мг/л несколько стимулирует рост культуры Chl. pyrenoidosa. Количество мертвых клеток также превышает их число в контроле, однако их меньше, чем на среде с ПАВ без глюкозы. Во всех опытных вариантах отмечено снижение концентрации ДДС. Убыль большей части ДДС в культуральной жидкости Chl. pyrenoidosa происходит за 8 суток. После этого в среде еще определяются остаточные количества вещества, которое не разрушается при дальнейшем культивировании водорослей. Полное исчезновение ПАВ наблюдается лишь в одном случае – при наличии в среде 50 мг/л вещества и глюкозы. Контроль загрязнения показал, что на протяжении всех опытов культуры водорослей были бактериально чистыми. Таким образом, полученные данные позволяют сделать вывод о том, что некоторые штаммы водорослей Chlorella способны разрушать алкилсульфаты. Активность водорослей значительно ниже активности бактерий. Однако деструкция алкилсульфатов водорослями, по-видимому, может играть определенную роль в водоемах, загрязненных ПАВ.

В последние годы много внимания уделяется изучению путей микробного метаболизма анионных ПАВ, а также выделению и исследованию ферментов, ответственных за их разрушение. Показано /65/, что углеводородные радикалы алкилсульфатов, алкилсульфонатов и алкилбензолсульфонатов окисляются в тех же биохимических реакциях, что и углеводороды, жирные кислоты и спирты. Пути микробной деструкции алкилбензолсульфонатов включают также реакции расщепления бензольного кольца.

АБС более устойчивы к разложению и, поскольку они количественно преобладают в общем объеме продукции ПАВ, их метаболизм изучен детальнее. Основными биохимическими реакциями, ведущими к разрыву связей С-С, в результате чего разрушается молекула АБС, являются w-окисление, т.е. окисление терминальной метильной группы в алкильной цепи, a-окисление, b-окисление и деструкция бензольного кольца при помощи механизмов орто- или мета-расщепления. w-Окисление алкильного радикала происходит аналогично разложению прямоцепочечных углеводородов через образование спирта и альдегида до карбоксикислоты:

– СН2-СН3 ® – СН2-СН2ОН ® – СН2-СНО ® – СН2-СООН.

При a-окислении алкильная цепь прогрессивно укорачивается на один атом углерода, который выделяется в виде СО2. b-Окисление ведет к последовательному уменьшению алкильной цепи на два атома углерода сразу.

Хейман и Молоф исследовали способность выделенной Пейном с сотрудниками /66/ культуры Pseudomonas С 12В метабилизировать линейные первичные и вторичные алкилбензолсульфонаты с различной длиной улеводородной цепи. Культура разрушала АБС с короткими 1- и 2-углеродными алкильными цепями. АБС с длинной (С3-С12) цепью начинали разлагаться только после предварительной инкубации бактерий со спиртами, альдегидами или кислотами, как с соответствующим числом атомов углерода, так и с более длинной цепью. Авторы предполагают, что для разложения АБС с длинной алкильной цепью необходима предварительная индукция соответствующих ферментов соединениями, близкими по структуре к изучаемым АБС, но не содержащими кольца. Бактериальная деструкция АБС происходит в результате ряда биохимических реакций: w-окисления, b-окисления, вторичного w-окисления, a-окисления, неполного b-окисления и декарбоксилирования, которые приводят к образованию бензойной или фенилуксусной кислоты. Причем АБС с нечетным числом углеродных атомов в алкильной цепи метаболизируется через бензойную, а с четным – через фенилуксусную кислоту. Вещества с четным числом атомов углерода индуцируют путь бензойной кислоты, с нечетным – оба пути. Дальнейшее разрушение бензойной и фенилуксусной кислот происходит с разрывом кольца.

Неионогенные ПАВ еще более разнообразны по своей химической структуре, чем анионные. Они представляют собой продукты присоединения окиси этилена к веществам, содержащим активный водород, например, к алкилфенолам, жирным спиртам, меркаптанам и др. Практически любое соединение, молекула которого наряду с гидрофобным радикалом содержит карбоксильную, гидроксильную, амидную или аминную группу с подвижным атомом водорода, может реагировать с окисью этилена, образуя неионогенное ПАВ. Гидрофильную группу в молекуле НПАВ могут образовывать, помимо окиси этилена, и другие соединения. Так, довольно широко применяются НПАВ – сложные эфиры маннита и сорбита, которые называют соответственно маннитаны и сорбитаны или спаны. Оксиэтилированные эфиры сорбита и маннита нашли распространение под названием «твины». Хорошо известны НПАВ, в состав которых, наряду с окисью этилена, входят остатки окиси пропилена – так называемые блок-сополимеры. Разнообразие химического строения НПАВ создает трудности при анализе этих веществ и приводит к получению весьма противоречивых результатов при изучении биоразлагаемости /67/.


Страница: