Возможности ионообменной хроматографии
Рефераты >> Биология >> Возможности ионообменной хроматографии

Вместо ступенчатой элюции может оказаться целесообразным постепенно увеличивать концентрацию соли, то есть перейти на элюцию непрерывным градиентом концентрации соли. Линейным или нелинейным - чтобы сократить разрыв между пиками.

В ситуации, изображенной на рис. целесообразно использовать "вогнутый" градиент концентрации соли: медленно нарастающей в области ее малых значений и круто - в области больших концентраций. Это приблизит пик белка 5 к остальным и тем самым сократит время хроматографии.

Я привел для примера способ выбора содержания соли в элюенте в случае уже выбранного рН буфера. Аналогичный опыт можно поставить и для исследования влияния рН при одной определенной концентрации соли. (Напомню, что величина рН обязательно влияет на состояние ионогенных групп белка и, следовательно, на распределение зарядов по поверхности белковой глобулы. В случае использования слабого ионообменника от рН зависит и количество активных ионов на матрице) Далее результаты обоих опытов можно разумно объединить, варьируя (ступенчато или в градиенте) оба параметра. Возможно, что придется сменить ионообменник или существенно удлинить колонку.

Если, несмотря на все усилия, разделить белки смеси в одном хроматографическом опыте не удастся, то можно вышедшие из колонки фракции неразделившихся белков объединить и внести в колонку с другим ионообменником или использовать другой вид хроматографии.

Нередко перед исследователем стоит задача очистки одного определенного белка из смеси с другими. В этом случае оптимальные условия элюции подбирают так, чтобы остальные белки, не разделяясь, отходили от нужного белка в ту или другую сторону, т.е. элюировались раньше него или задерживались на колонке.

Резюмируя, следует заключить, что использование способа фракционирования белков методом ионообменной хроматографии требует весьма серьезной и вдумчивой предварительной работы по оптимизации условий проведения этой хроматографии.

Разумеется, задача еще усложняется, если в распоряжении исследователя нет чистых белков, входящих в состав фракционируемой смеси. В этом случае приходится довольствоваться либо литературными данными об их свойствах, либо вести подбор условий используя по возможности близкие аналоги отсутствующих белков.

Возможности ионообменной хроматографии

На рис. показан результат хроматографического разделения 20-ти белков из 40S - субъединицы рибосомы рачка Artemia salina (Ting Shih etal. 1979) Фракционирование вели на колонке СМ-целлюлозы (1х30 см) линейным градиентом NaCI (0-0,4 М) в фосфатном буфере рН6,5.

Разделение отнюдь не блестящее. Методом электрофореза можно добиться заметно лучшего результата. Но зато все белки получены в одном хроматографическом разделении, не ограниченном в отношении препартивного масштаба (можно увеличить количество материала и размер колонки) и нет проблемы элюции белков из геля.

400 300

Рис.

Рис. демонстрирует отмеченные ранее преимущества хро-матографии при среднем давлении в системе FPLC. На анионообменнике "Моно Ф" (см. выше) проводили разделение белков яда Crotalus atrox. Элюцию вели линейным градиентом концентрации NaCI (0-0,35 М) при рН7,5. За 20 минут удалось хорошо разделить более десятка белковых пиков.

Распределительная хроматография

В предыдущей главе мы ввели понятия неподвижной и подвижной фаз при хроматографии. Далее было установлено, что для разделения веществ, нанесенных на колонку в виде смеси, необходимо, чтобы для каждого из компонентов этой смеси установилось динамическое равновесие концентраций между двумя фазами.

Эти равновесия должны быть сильно сдвинуты в сторону неподвижной фазы. В ионообменной хроматографии такой сдвиг происходил за счет электростатической, ионной связи каждого из веществ с твердой хроматографической матрицей.

С током подвижной фазы (элюента), уносящей растворенные в ней вещества, все эти равновесия нарушаются и немедленно восстанавливаются (на более низком уровне концентраций) за счет частичного выхода из неподвижной фазы каждого из веществ.

Слоем ниже идет обратный процесс - динамические равновесия устанавливаются за счет перехода веществ из подвижной фазы в неподвижную до тех пор, пока эти новые равновесия не достигнут наивысшего уровня концентраций. После чего снова начинается вымывание веществ элюентом, точно такое же, как происходило в вышележащем слое, который тем временем опустошается.

Так происходит перемещение связанных с матрицей зон различных веществ вниз по колонке. Эти зоны движутся с различными скоростями, что обусловлено различием сил связывания каждой из них с матрицей и, соответственно, различием соотношений равновесных концентраций разделяемых веществ в неподвижной и подвижной зонах.

Повторное изложение сути хроматографического процесса имеет целью обратить внимание читателя на то, что в нем не фигурирует механизм связи веществ с матрицей.

Собственно говоря, не заявлена даже необходимость такой связи, а только условие различия равновесных концентраций в двух зонах, специфическое для каждого из фракционируемых веществ.

Такое условие может быть выполнено и другими способами. Например, можно использовать различие растворимостей этих веществ в разных растворителях. Гидрофильные вещества, имеющие на поверхности своих молекул поляризованные участки или ионы. Они хорошо растворимы в воде и плохо - в органических растворителях.

Гидрофобные же вещества плохо растворимы в воде и хорошо - в органике. Были даже названы наиболее типичные из гидрофобных веществ: алифатические цепочки вида СНз-CH2-CH2 . и ароматические молекулы - замкнутые циклы с сопряженными связями типа бензола или фенола.

Следует заметить, что абсолютной нерастворимости не бывает. Гидрофильные вещества плохо, но все-таки растворяются в органических растворителях. То же самое относится и к взаимоотношениям гидрофобных веществ и воды.

Представим теперь себе колонку, заполненную целлюлозой, набухшей в воде. Внутри гранул такой целлюлозы тоже будет находиться неподвижная вода. Потом пропустим через эту колонку фенол, который заполнит пространство между гранулами.

Наконец внесем на эту колонку смесь гидрофильных веществ, хотя бы обычных водорастворимых белков. Большая их часть немедленно "укроется" в неподвижной водной фазе внутри гранул. Малая же их доля (для разных белков - разная) все-таки растворится в феноле. Установятся динамические равновесия концентраций белков, отвечающие соотношениям их растворимостей, во всех случаях сильно сдвинутые к неподвижной фазе. Но это и есть условие реализации колоночной хроматографии.

Можно надеяться, что если достаточно долго подавать на такую колонку фенол в качестве элюента, то в конце концов на выходе из колонки появятся разделенные между собой, очень пологие пики наших белков, растворенных в феноле.

Это - "распределительная хроматография". основанная на различии растворимостей. Исторически такое распределение, когда водная фаза находится внутри гранул, а элюентом служит органический растворитель, названо "нормальнофазовой" хроматографией. Она широкого распространения не получила.


Страница: