Возбудитель сибирской язвы
Вирулентность сибиреязвенных бацилл определяется двумя факторами агрессии: капсулой, представляющей полипептид d-глутаминовой кислоты; экзотоксином, состоящим из трех в отдельности нетоксичных белковых компонентов; смесь их, как указано выше, вызывает отечность и летальность.
Первым антигеном, выделенным из Вас.anthracis, был полисахаридный (соматический) комплекс. Он имеет серологическое и химическое родство с полисахаридами Вас. cereus и пневмококками IV типа. По мнению
Ю.В. Езепчука (1968), отсутствие видимой специфичности у полисахаридов дает основание полагать, что они выполняют у Вас. anthracis лишь структурную функцию и не (имеют отношение к факторам патогенности.
Другой антиген — капсульный полипептид, серологически трунновой; его обнаруживают и у сапрофитных спорообразующихся бацилл.
Капсульный полипептид рассматривают как один из важных факторов агрессии сибиреязвенной бациллы, так как он подавляет защитную фагоцитарную реакцию организма, повышает активность летального фактора экстрацеллюлярного сибиреязвенного токсина и одновременно подавляет опсонизацию. Однако соматический полисахарид и капсульный полипеитид глутаминовой кислоты бацилл не способны обусловливать синтез антител, определяющих фон специфической гуморальной защиты организма животного против возбудителя сибирской язвы. Эту роль у бацилл выполняет протективный антиген (компонент II) —внеклеточная субстанция протеиновой природы, синтезируемая в процессе метаболической активности микроба в организме животного или на специальных питательных средах и выделяемая бактериальной клеткой в окружающую среду.
Будучи одним из факторов патогенности, иммуногенный компонент сибиреязвенного микроба обусловливает формирование иммунитета к этой инфекции по типу антитоксического (Stanley и Smith, 1963). Он служит носителем специфических защитных свойств.
Имеющиеся данные свидетельствуют о значительной роли экзотоксина бациллы в проявлении многих типичных черт инфекционного процесса и формировании специфической защиты организма. Это дает основание рассматривать его как фактор, определяющий патогенез и иммунитет при сибирской язве.
1.4 Устойчивость
Устойчивость и длительность выживания бацилл и их спор различны. Первые относительно лабильны, вторые довольно резистентны. Бациллы в мягких тканях невскрытого трупа могут сохраняться 2—4 сут. (Ипатенко, 1982), так как разрушаются под воздействием протеолитических ферментов. В костном мозге неповрежденных костей этот процесс происходит несколько позже — бациллы остаются жизнеспособными здесь до 7 сут (Франке, 1964; Ипатенко, 1964- 1982).
Плюсовые температуры бациллы выдерживают недолго. Прямой солнечный свет убивает их за несколько часов. При нагревании до 50—55 °С они гибнут в течение часа, при 60 °С— через 15 мин, при 75 °С— через минуту, при кипячении — моментально. Быстрое высушивание убивает бациллу, а медленное приводит к образованию спор. Бациллы могут погибнуть через 2 недели при температуре 2—4°С. В желудочном соке животных бациллы погибают за 30 мин, в засоленном мясе сохраняются до 15 дн.
Минусовые температуры консервируют бациллы. Так, при —10 СС они выживают 24 дн., при —24 °С — 12 дп., в замороженном мясе при —15 °С — до 15 дп. Они могут сохраняться даже при температуре жидкого азота (—196°С).
Бациллы малоустойчивы к различным химическим веществам. Спирт, эфир, 2%-ный раствор формалина, 5%-пый раствор фенола, раствор сулемы 1: 1000,5—10%-ые растворы хлорамина, свежий 5%-ый раствор хлорной извести, перекись водорода разрушают их за 4—5 мин. Надежно убивают бацилл бромистый метил. ОКЭБМ (взвесь одной весовой части окиси этилена и 2,5 бромистого метила).
Свежее молоко тоже обладает бактериостатическими свойствами (оно задерживает развитие бацилл), но действие это сохраняется лишь 24 ч, позднее бациллы начинают размножаться, образуют споры, сохраняя присущую им патогенность. Антимикробные свойства молока обусловлены лизоцимом и лактинами — продуктами ферментативного окисления (Абдуллин и Капарович, 1971; Ипатенко, 1982). Рост бацилл может задерживать свежая кровь животных (Ипатенко, 1964—1982).
Бациллы чувствительны к действию некоторых антибиотиков — пенициллина стрептомицина, окситетрациклина, тетрациклина н биомицина. Бактериостатические свойства проявляются как in vitro, так и in vivo. Минимальные концентрации стрептомицина, задерживающие рост бацилл, колеблются о пределах 1,15— 2,34 мкг/мл; окситетрациклина — 0,22— 1,87 мкг/мл (Ипатенко, 1983).
При росте на МПА бациллы под влиянием низких доз пенициллина принимают форму шаров. Цепочки их приобретают вид «жемчужного ожерелья». Реакция эта специфична и может быть использована для ускоренной дифференциальной диагностики.
Антимикробное действие стрептомицина и окситетрациклина на вирулентные и вакцинные штаммы, взятые отдельно и в сочетании, не одинаково. Смесь стрептомицина с окситетрациклином обладает более выраженным действием, чем каждый из них отдельно. Одинаковые суммарные концентрации их в микрограммах на 1 мл среды превосходит в 2 раза действие окситетрациклина и в 4 раза — стрептомицина (Новиков, 1960). Следует учитывать, что в природе существуют особи бацилл, резистентные к антибиотикам.
Устойчивость спор. Споры гораздо устойчивее, чем вегетативные формы бацилл, и во внешней среде сохраняются дольше. Высокая устойчивость спор к различным воздействиям связана с наличием плотной многослойной оболочки, низким содержанием воды в ней и отсутствием ферментативной активности. Одним из важнейших факторов, обусловливающих высокую устойчивость спор, является присутствие кальциевой соли дипиколиновой кислоты; содержание кальция в спорах значительно выше, чем в вегетативных телах.
Резистентность спор во многом зависит от того, насколько быстро они сформировались. Споры, образовавшиеся при 18— 20°С, более резистентны, чем споры, сформировавшиеся при температурах 35— 38 СС (Рево, 1931). Споры могут при определенных условиях сохраняться десятилетиями во внешней среде ( почве) жизнеспособными и вирулентными (Ипатенко, 1982).
Высушивание не оказывает воздействия на споры. В высушенных агаровых и желатиновых культурах споры остаются жизнеспособными и вирулентными до 55 лет. Прямой солнечный свет разрушает споры лишь через 4 дня (Франке, 1964; Ипатенко. 1982), но губительно на них действуют ультрафиолетовые лучи и Х-лучи — споры гибнут через - 20 ч. Сухой жар (120— 140°С) убивает споры только через 2—3 ч, при 150°С они гибнут через 1 ч, текучий пар при 100°С разрушает их через 12—15 мин, автоклавированно при 110°С — через 5 — 10 мин, кипячение — в течение часа. При 400 С споры гибнут через 20—30 с.
Споры устойчивы и к химическим веществам. Этиловый спирт в концентрациях 25% и выше убивают споры лишь через 50 дн., сулема в разведении 1000,5%-ный раствор фенола, 5— 10%-ые растворы хлорамина разрушают их через несколько суток (возможно и часов), 1%-ный раствор формалина — через 2 ч, 2%-ый раствор формалина — через 10 — 15 мин, 4%-ый раствор перманганата калия — через 15 мин, 3%-ный раствор перекиси водорода — через 1 ч, 10%-иыя раствор едкого натра — через 2 ч. По данным М.А. Сефершаева (1964), споры устойчивы к смоляным фенолам, являющимся отходами сланцевой промышленности.