Влияние космических процессов и явлений на развитие Земли
В целом, влияние выброшенного в атмосферу вещества можно рассматривать в рамках сценариев последствий ядерной войны. Хотя мощность взрыва астероида десятикратно превзойдёт суммарную мощность взрывов в самом жёстком из упомянутых сценариев, его локальный характер, в отличие от охватывающей всю планету войны, обуславливает сходство предполагаемых последствий (так, взрыв 20-килотонной бомбы над Хиросимой привёл к разрушениям, эквивалентным обычной бомбардировке суммарной мощностью взрывов 1 килотонна тротиловых бомб).
Существует множество предположений о влиянии большого количества выброшенного в атмосферу аэрозоля на климат. Непосредственное изучение этих воздействий возможно при исследовании крупных вулканических извержений. Наблюдения показывают в целом, что при самых мощных извержениях, сразу вслед за которыми в атмосфере остаётся несколько кубических километров аэрозоля, в ближайшие два-три года повсеместно понижаются летние температуры и повышаются зимние (в пределах на 2-3°, в среднем значительно меньше). Происходит уменьшение прямой солнечной радиации, доля рассеянной повышается. Увеличивается доля поглощённого атмосферой излучения, температура атмосферы растёт, температура поверхности падает. Тем не менее, эти эффекты не имеют длительного характера - атмосфера достаточно быстро очищается. За время порядка полугода количество аэрозоля уменьшается десятикратно. Так, через год после взрыва вулкана Кракатау в атмосфере сохранилось около 25 млн. т аэрозоля, по сравнению с начальными 10-20 млрд. т. Разумно предположить, что после падения астероида очищение атмосферы будет происходить в том же темпе. Следует учесть также, что уменьшению потока получаемой энергии будет сопутствовать и уменьшение потока теряемой с поверхности энергии, вследствие усиления её экранирования - "парниковый эффект". Таким образом, если вслед за падением и произойдёт падение температур на несколько градусов, уже через два-три года климат практически вернётся к нормальному состоянию (например, через год в атмосфере останется около 10 млрд. т аэрозоля, что сравнимо с тем, что было сразу после взрыва Тамборы или Кракатау).
Падение астероида, безусловно, представляет собой одну из самых больших катастроф для планеты. Его воздействие легко сравнимо с другими, более частыми естественными катастрофами, такими, как взрывное извержение вулкана или крупное землетрясение, а может и превзойти их по силе воздействия. Падение приводит к тотальным локальным разрушениям, а общая площадь зоны поражения может достичь нескольких процентов от всей площади планеты. Однако падения действительно крупных астероидов, способных оказать глобальное воздействие на планету, достаточно редки в масштабах времени существования жизни на Земле.
Столкновение с астероидами малого размера (до 1 км диаметром) не приведёт к сколько-нибудь заметным планетарным последствиям (исключая, конечно, практически невероятное прямое попадание в район скопления ядерных материалов).
Столкновение с более крупными астероидами (примерно от 1 до 10 км диаметром, в зависимости от скорости столкновения) сопровождается мощнейшим взрывом, полным разрушением упавшего тела и выбросом в атмосферу до нескольких тысяч кубических метров породы. По своим последствиям это явление сравнимо с наиболее крупными катастрофами земного происхождения, такими как взрывные извержения вулканов. Разрушение в зоне падения будут тотальными, а климат планеты скачкообразно изменится и придёт в норму лишь через несколько лет. Преувеличенность угрозы глобальной катастрофы подтверждается тем фактом, что за свою историю Земля перенесла множество столкновений с подобными астероидами и это не оставило доказано заметного следа в её биосфере (во всяком случае, далеко не всегда оставляло).
Среди известных нам работ по метеоритной тематике, пожалуй, наиболее изящен и скрупулезно проработан «Миф о Потопе» Андрея Склярова. Скляров изучил множество мифов разных народов, сопоставил их с археологическими данными и пришёл к выводу, что в XI тысячелетии до н.э. на Землю упал крупный метеорит. По его расчётам, метеорит, радиусом 20 км, летел со скоростью 50 км/сек, и произошло это в период с 10480 по 10420 год до н.э.
Метеорит, упавший почти по касательной к земной поверхности в районе Филиппинского моря, вызвал проскальзывание земной коры по магме. В результате кора повернулась относительно оси вращения земного шара, и произошло смещение полюсов. Помимо смещения земной коры относительно полюсов, приведшего затем к перераспределению ледниковых масс, падение сопровождалось цунами, активизацией вулканов и даже наклоном Филиппинской океанической плиты, результатом которого стало образование Марианской впадины.
Как уже говорилось, работа поражает изяществом, тщательностью проработки деталей, поэтому особенно жаль, что она не имеет никакого отношения к действительности.
Во-первых, в течение последних 60 миллионов лет экваториальный уровень мирового океана существенно не изменялся. Доказательство этому получено (в виде побочного эффекта) при бурении скважин на атоллах в поисках полигона для испытания водородных бомб. В частности, скважины на атолле Эниветок, находящегося на склоне океанического жёлоба и постепенно опускавшегося, показали, что в течение последних 60 млн. лет на нём непрерывно нарастал коралловый слой. Это означает, что температура окружающих океанских вод за всё это время не опускалась ниже +20 градусов. Кроме того, не было никаких быстрых изменений уровня океана в экваториальной зоне. Атолл Эниветок находится достаточно близко к предлагаемому Скляровым месту падения метеорита, и кораллы неминуемо должны были пострадать, что не обнаружено.
Во-вторых, в течение последних 420 тысяч лет среднегодовая температура ледникового щита Антарктиды не поднималась выше минус 540С, и щит за весь этот период ни разу не исчезал.
По общему признанию, самые впечатляющие открытия последних лет в области палеоклиматологии сделаны при бурении ледниковых щитов и исследованиях ледяного керна в центральных районах Гренландии и Антарктиды, где ледовая поверхность практически никогда не тает, а значит и содержащаяся в ней информация о температуре приземного слоя атмосферы сохраняется на века.
Совместными усилиями российских, французских и американских учёных по изотопному составу ледяного керна из сверхглубокой ледовой скважины (3350 м) на российской антарктической станции «Восток» удалось воссоздать климат нашей планеты за этот период. Так вот, средняя температура в районе станции «Восток» за эти 420 тысяч лет колебалась примерно от - 54 до - 77оС.
В-третьих, во время последнего «ледникового периода» (20 - 10 тысячелетий тому назад) климат, средней полосе России, включая Сибирь, мало отличался от сегодняшнего, особенно летом. Об этом свидетельствует изотопная метка атмосферных осадков, которая сохраняется сотни тысяч лет во льду полярных ледников и в вечной мерзлоте, почвенных карбонатах, фосфатах костей млекопитающих, древесных кольцах и т.п.[16]
2.2 Воздействие Солнца на Землю