Вероятность в биологии
Рефераты >> Биология >> Вероятность в биологии

Мендель, однако, не остановился на этом. Он произвел самоопыление гибридов второго поколения и получил гибриды третьего, а затем и четвертого поколения. Ученый обнаружил, что гибриды второго поколения с рецессивным признаком при дальнейшем размножении не расщепляется ни в третьем, ни в четвертом поколениях. Так же ведет себя примерно треть гибридов второго поколения с доминантным признаком. Две трети гибридов второго поколения с доминантным признаком расщепляются при переходе к гибридам третьего поколения, причем опять-таки в отношении 3:1. Получившиеся в результате этого расщепления гибриды третьего поколения с рецессивным признаком и треть гибридов с доминантным признаком при переходе к четвертому поколению не расщепляются , а остальные гибриды третьего поколения расщепляются, причем снова в отношении 3:1.

Заметим, что явление расщепления гибридов демонстрирует важное обстоятельство: особи с одинаковыми внешними признаками могут обладать разными наследственными свойствами, что и обнаруживается во внешних признаках их потомства. Мы видим, что по фенотипу нельзя судить с достаточной полнотой о генотипе. Если особь не обнаруживает в потомстве расщепления, то ее называют гомозиготной; если же при размножении она обнаруживает расщепление, то ее называют гетерозиготной. Пример гомозиготных особей – все особи с рецессивным признаком среди гибридов второго поколения.

Полученные Менделем результаты хорошо просматриваются на рисунке 6.1, где желтым цветом показаны организмы с доминантным признаком, а зеленые - – рецессивным. Глядя на этот рисунок, нетрудно уловить определенную закономерность. Мендель разгадал эту закономерность и тем самым раскрыл механизм передачи наследственных признаков от поколения к поколению. Мендель понял, что разгаданная им закономерность имеет вероятностный характер.

Конечно, наблюдения над гибридами производились и до Менделя. Достаточно, например, привести записи современника Менделя Шарля Нодэна, работавшего садовником в Ботаническом саду в Париже : « Начиная со второго поколения, облик гибридов изменяется заметным образом. Столь совершенное единообразие гибридов первого поколения сменяется обычно крайней пестротой форм, одни из которых приближаются к виду отца, другие – к матери…» но до Менделя никто не предпринял систематизированных исследований, с учетом отдельных выделенных признаков, с подсчетом чисел проявлений тех или иных признаков в различных поколениях гибридов. Мендель был первым, кто все это проделал, потратив на опыты восемь лет. Поэтому, в отличии от всех своих предшественников, Мендель понял закономерности наследственной передачи признаков.

Здесь уместно сказать то, что результаты своих исследований Мендель доложил в феврале 1865 года Обществу естествоиспытателей в Брюнне. Слушатели не поняли исключительной важности представленного доклада. Они не догадались, что в этой работе суждено произвести настоящую революцию в науке о наследственности. В 1866 году доклад Менделя был напечатан в Брюнском бюллетене и разослан по списку 120 научным учреждениям разных стран. К сожалению, Дарвин этого бюллетеня не получил.

Мир давно признал Менделя как основателя современной генетики. Это призвание пришло лишь в 1900 году, через пятнадцать лет после кончины талантливого исследователя.

Закономерности случайного комбинирования генов при скрещивании

Хромосомы и гены.

Напомним некоторые сведенья из цитологии – раздела биологии, изучающего клетку. Различают два типа клеток – половые клетки (гаметы) и неполовые, или иначе, соматические. В ядре каждой клетки находятся нитевидные хромосомы, представляющие собой гигантские молекулы дезоксирибонуклеиновой кислоты (сокращенно: ДНК) в соединении с молекулами белков. В хромосомах, а точнее, в молекулах ДНК содержится вся информация, определяющая генотип данного организма. Отдельные участки хромосомы, «ответственные» за те или иные наследственные признаки, называют генами. Каждая хромосома содержит несколько сотен генов. Иногда хромосому упрощенно представляют в виде своеобразной нити, на которую, словно бусинки, нанизаны различные гены.

Каждому виду соответствует определенный набор хромосом, определяемый количеством хромосом и их генными характеристиками. Например, у овса имеются 42 хромосомы, у плодовой мушки дрозофилы 8 хромосом, у шимпанзе 48 хромосом, у человека 46 хромосом. Ядро каждой соматической клетки содержит полный набор хромосом, соответствующий данному виду. Это означает, что в каждой клетке организма содержится вся наследственная информация.

Приведенные выше для нескольких видов числа хромосом характеризуют хромосомные наборы в соматических, но не в половых клетках. Каждая половая клетка (гамета) имеет в два раза меньше хромосом, чем соматическая.

Начнем с хромосомного набора соматической клетки. В этот набор входят две половые хромосомы. У женских особей обе половые хромосомы одинаковые (две X-хромосомы), у мужских особей половые хромосомы разные ( одна X-хромосома и одна Y-хромосома). Неполовые хромосомы, имеющиеся в соматической клетке, разбиваются на пары; попавшие в одну пару хромосомы (их называют гомологичными ) очень похожи друг на друга. Каждая содержит одно и тоже число генов, одинаковым образом расположенных в той и другой хромосомных нитях, а главное, отвечающих за одни и те же виды признаков. Например, у гороха есть пара гомологических хромосом, каждая из которых содержит ген окраски семян. У этого гена, как и у других, есть две разновидности (их называют аллелями) – доминантная и рецессивная. Доминантная разновидность гена окраски (доминантный аллель) соответствует желтому цвету, а рецессивная (рецессивный аллель) зеленому. Если в обеих гомологичных хромосомах рассматриваемый ген представлен одинаковыми аллелями, то данная особь гомозиготна по рассматриваемому признаку. Если же в одной хромосоме содержится один аллель, а в другой гомологичной хромосоме другой, то данная особь гетерозиготна. В ее фенотипе проявляется признак, отвечающий доминантному аллелю.

Теперь рассмотрим хромосомный набор гаметы (половой клетки). Гамета имеет только одну половую хромосому. У женской особи это всегда X-хромосома. У мужской особи это может быть либо X-хромосома (в одних гаметах), либо Y-хромосома (в других гаметах). Кроме единичной половой хромосомы, гамета содержит по одной хромосоме из каждой пары гомологичных хромосом. Допустим, что имеются всего две пары гомологичных хромосом и с каждой парой сопоставляется некоторый определенный признак. Пусть данная особь гетерозиготна по обоим видам признаков. Такая особь будет иметь четыре типа гамет, что хорошо видно из рисунка 6.2, а (красным цветом на рисунке показаны хромосомы, несущие доминантные аллели, а синим рецессивные). В случае, изображенном на рисунке 6.2,б, рассматриваемая особь гомозиготна по одному признаку и гетерозиготна по другому. В этом случае имеется только два типа гамет.

При оплодотворении мужская гамета сливается с женской. Оплодотворенная женская гамета (ее называют зиготой) имеет полный хромосомный набор. В каждой паре гомологичных хромосом одна хромосома получена от отца, а другая от матери. Организм развивается из зиготы посредством клеточных делений. В каждом случае делению клетки предшествует дублирование (удвоение) всех хромосом, содержащихся в ядре клетки. В результате ядро каждой соматической клетки организма содержит тот же самый набор хромосом и генов, какой имела зигота. Когда организм достигает полового созревания, в нем происходят особые процессы, приводящие к образованию гамет.


Страница: