Биофизика фотобиологических процессов
Рефераты >> Биология >> Биофизика фотобиологических процессов

В проводимых в настоящее время исследованиях ФС II широко используются новейшие методы, применяемые в передовых областях биофизики, биохимии, молекулярной биологии, нанотехнологии для изучения каталитических центров металлоферментов, механизмов внутри- и межмолекулярного переноса электрона, структурной организации и функционирования наноструктур. К ним можно отнести различные методы регистрации флуоресценции, рентгеноструктурный анализ, точечный мутагенез, компьютерное моделирование структуры, рентгеновскую спектроскопию, ЭПР, инфракрасную спектроскопию с Фурье разложением и т.д. Исследования КВК, проводимые на кафедре биофизики, направлены на выяснение структурной организации КВК с использованием разработанного метода замещения катионов марганца на катионы железа, а также роли кофакторов КВК — катионов кальция и анионов хлора — в окислении воды.

Проблемы регуляции первичных процессов фотосинтеза

Фотосинтетический аппарат имеет сложную многоуровневую систему регуляции, которая должна обеспечивать эффективное использование энергии света, а также сопряжение световых и темновых процессов фотосинтеза. Существует целая иерархия регуляционных механизмов, зависящих от физиологического состояния и изменений среды, которые условно можно разделить на «медленные» и «быстрые». «Медленные» предполагают перестройку и изменение структуры хлоропласта и его компонентов, их действие связано с включением генетического аппарата и синтезом новых белков, для чего требуется определенное время (минуты, часы). Эти процессы зависят от работы регуляторных белков, которые активируются под действием света.

Механизмы «быстрой» регуляции, ответственные за динамические изменения в функционировании отдельных участков фотосинтетической цепи, с синтезом белка не связаны. Они основаны на изменениях констант взаимодействия переносчиков, например, вследствие изменения их конформации, и направлены на недопущение перевосстановленности ЭТЦ при высоких освещенностях. Из результатов исследований последних лет, проводимых на кафедре биофизики, можно предполагать, что следствием наличия гибкой системы регуляции является защита от окислительных повреждений, а целью быстрой регуляции электронтранспортных процессов фотосинтеза — создание оптимального состояния ЭТЦ, когда нет избытка или недостатка электронов на определенных ее участках, что позволяет защитить фотосинтетические мембраны от фотодеструкции.

Наличие большого числа акцепторов электронов открывает дополнительные возможности для регуляции электронного потока и систем ассимиляции СО2 и азота, что необходимо для обеспечения процессов синтеза белка в хлоропласте. Кроме того, существование альтернативных путей сброса электронов препятствует «перевосстановлению» компонентов, поддерживая их в определенном редокс-состоянии.

Существует несколько механизмов, защищающих фотосинтетические мембраны от фотоповреждения. Важную роль играет нефотохимическое тушение возбужденных состояний хлорофилла, этот механизм связан с образованием трансмембранного ΔрН, а также работой виолоксантинового цикла. Вся не использованная в фотосинтезе энергия поглощенных квантов света рассеивается в виде тепла или излучается в виде флуоресценции. Увеличение рассеивания энергии в виде тепла уменьшает количество актов разделения зарядов в РЦ и, соответственно, приводит к уменьшению потока электронов в ЭТЦ. Подавляющая часть флуоресценции, наблюдаемой при изучении листьев высших растений или суспензий зеленых водорослей, генерируется в ФС II. В настоящее время параметры флуоресценции широко используются в фундаментальных и прикладных исследованиях как показатель состояния и эффективности функционирования фотосинтетического аппарата. Основная идея состоит в том, что уменьшение эффективности запасания света в фотосинтезе приводит к увеличению интенсивности флуоресценции. Изменения состояния фотосинтетического аппарата сопровождаются изменением вероятности тушения энергии электронного возбуждения молекул хлорофилла, что и проявляется в изменении квантового выхода и времени затухания флуоресценции.

Фотоиндуцированное выделение водорода

Перспективным направлением исследований является фотоиндуцированное выделение водорода эукариотическими микроводорослями — еще один механизм регуляции первичных процессов фотосинтеза. Этот удивительный процесс был открыт более 60 лет назад и активно используется в биотехнологических целях, однако в понимании молекулярных механизмов и принципов регуляции процесса есть еще много белых пятен. Водород выделяется гидрогеназой — ферментом, восстанавливающим протоны до молекулярного водорода. Непосредственными донорами электронов в гидрогеназной реакции являются ферредоксин или НАДФ. Таким образом, фотоиндуцированное выделение водорода тесно связано с работой фотосинтетической ЭТЦ, но непременным условием этого процесса является отсутствие кислорода, который ингибирует активность фермента даже при очень низких концентрациях.

Как биотехнологический прием для разделения во времени процессов фотосинтетического выделения О2 и светозависимого выделения Н2 можно использовать серное голодание культуры водорослей. Изучение влияния серного голодания на клетки Chlamydomonas reinhardtii в аэробных условиях (когда гидрогеназа неактивна) показало, что при недостатке серы происходит инактивация катализируемого ФС II выделения О2 . В замкнутом культиваторе культура микроводоросли на свету в отсутствие серы в среде проходит несколько последовательных стадий. Сначала идет активное выделение O2, затем активность ЭТЦ фотосинтеза снижается, и процессы дыхания начинают преобладать над процессами фотосинтеза. Когда скорость фотосинтетического образования O2 становится ниже скорости дыхания, культура переходит в анаэробные условия, и через некоторое время начинается выделение H2.

О том, что происходит с фотосинтетическим аппаратом при прохождении всех этих стадий, можно судить по параметрам флуоресценции хлорофилла. Изучение динамики активности ФС II Chlamydomonas reinhardtii в культиваторе показало, что переход в анаэробиоз сопровождается резким падением активности ФС II, по времени совпадающим с началом выделения водорода. Активацию гидрогеназы в анаэробных условиях можно рассматривать как адаптивный механизм, который увеличивает отток электронов на водород, что снижает степень восстановленности пула хинонов и реактивирует часть центров ФС II. Это способствует частичному сохранению фотосинтетического электронного транспорта в голодающих клетках и обеспечивает их некоторым количеством кислорода, что позволяет некоторое время оставаться жизнеспособными в условиях стресса. Временное частичное повышение скорости электронного транспорта вызывает реокисление пула хинонов, что видно по изменению индукционной кривой флуоресценции. Эти результаты показывают, что изменение редокс-состояния пула хинонов — способ регуляции ЭТЦ при смене условий.

Весьма перспективным при прояснении вопроса о роли фотосистемы II в процессах выделения водорода является использование мутантов с сайт-специфичными повреждением в ФС II. Были использованы мутанты водоросли C. reinhardtii, обладающие различной кислород-выделяющей активностью. Представлялось, что частичная потеря кислородвыделяющей активности будет иметь следствием ускорение перехода в анаэробные условия, но не должна отрицательно сказаться на скорости продукции Н2 . Однако оказалось, что, чем больше повреждена способность ФС II к выделению О2 , тем сильнее снижена способность к выделению водорода. Изучение динамики накопления и расхода метаболитов (крахмала, формата и ацетата) в разных мутантах в ходе серного голодания показало, что образование водорода в большей, чем ожидалось, степени коррелирует с активностью ФС II. Эти исследования могут быть основой для разработки биотехнологических приемов для увеличения выхода Н2 .


Страница: