Биолюминесценция
Биолюминесценция, видимое свечение некоторых живых организмов. Биолюминесценция – результат биохимической реакции, в которой химическая энергия возбуждает специфическую молекулу и та излучает свет.
Происхождение. Особенностью биолюминесцентных систем является то, что они не закреплялись в филогенезе (т.е. эволюционно). Большинство из них возникло у разных животных независимо, и потому они сильно различаются как с биологической, так и с химической точки зрения. Таким образом, в противоположность многим структурным белкам и ферментам (таким, как гистоны, цитохромы или мышечные белки), сходным у филогенетически далеких форм, субстраты и ферменты биолюминесцентных систем у разных животных, способных к светоизлучению, совершенно различны.
Известно по крайней мере 30 случаев возникновения биолюминесценции в процессе эволюции. И хотя каждая из биолюминесцентных систем формировалась самостоятельно, имеются примеры сходства между ними. Некоторые из таких примеров могут объясняться общностью факторов питания, другие – латеральным переносом генов или конвергенцией (совпадением) независимо развившихся признаков.
Физика и химия. Некоторые физические и химические особенности являются общими для всех биолюминесцентных реакций. Излучаемый свет не зависит от света или другой энергии, непосредственно поглощаемой организмом. Он также не связан с термическим возбуждением при высокой температуре.
Биолюминесценция – это хемилюминесцентная реакция, в которой химическая энергия превращается в световую. В ходе реакции субстрат (люциферин) окисляется под действием фермента (люциферазы). Люциферины и люциферазы у разных организмов химически различаются, однако все хемилюминесцентные реакции требуют молекулярного кислорода и протекают с образованием промежуточных комплексов – органических пероксидных соединений. При распаде этих комплексов высвобождается энергия, возбуждающая молекулы вещества, ответственного за светоизлучение.
От энергии светового кванта (фотона) зависит частота испускаемого света (т.е. его цвет). Поскольку люциферины у животных разные, излучаемый свет варьирует от синего (у морских водорослей динофлагеллат) до зеленого (у медузы), желтого (у светляков) и красного (у личинки южно-американского жука Phrixothrix). Соответствующие этим цветам энергии фотонов составляют от 70 (для голубого света) до 40 (для красного) килокалорий (ккал) на 1 эйнштейн (61023 фотонов). Такая энергия, высвобождаемая одноактно, значительно превышает энергию большинства биохимических реакций, в том числе распад высокоэнергетической молекулы аденозинтрифосфата (АТФ, 7 ккал).
Организмы, светоизлучение и биохимия. Люминесценция встречается у эволюционно разнородных групп организмов, в том числе у некоторых бактерий, грибов, водорослей, кишечнополостных, червей, моллюсков, насекомых и даже рыб, но не наблюдается у более высокоорганизованных животных. Проявление и регуляторные механизмы люминесценции у этих организмов разнятся, как различны по характеру и фотофоры (структуры) и фотоциты (клеточные типы), ответственные за эти процессы. Существует 30 типов биолюминесцентных систем, из них детально изучены менее десяти. Пять таких типов описаны ниже.
Бактерии. Люминесцентные бактерии обитают в морской воде и реже – на суше. Их легко вырастить в чашках с агаром. Такие бактерии бывают также симбионтами некоторых морских рыб и кальмаров, живущими в специальных световых органах. Часто они существуют как кишечные бактерии у многих морских видов, иногда как паразиты у ракообразных, как сапрофиты – на останках животных. Бактерии светятся голубым светом, испускаемым молекулой флавина. (Окисление альдегида и восстановление молекулы рибофлавинфосфата сопровождаются возбуждением флавина.) Там, где бактерии существуют как симбионты, свечение может регулироваться хозяином.
Динофлагеллаты. Динофлагеллаты – одноклеточные водоросли, со свечением которых связаны, например, фосфоресценция океана и знаменитые фосфоресцирующие пляжи Карибского побережья. Динофлагеллаты «вспыхивают» при появлении ряби на воде, например от лодки. Свет исходит из органелл (сцинтиллонов) – специализированных структур в цитоплазме. Органеллы «вклиниваются» в кислотную вакуоль и начинают светиться при изменении pH в момент возбуждения. Присутствующий в них люциферин является тетрапирролом, сходным с хлорофиллом; при катализе люциферазой он реагирует с кислородом, испуская голубое свечение.
Ракообразные. Люминесценция может быть и внеклеточной. Ракообразные Vargula, обитающие в водах Японии, – типичный пример свечения такого типа. Эти животные выделяют раздельно (из разных желез) люциферин и люциферазу, и в воде в результате их взаимодействия возникает люминесценция. Во время Второй мировой войны японцы использовали сухих рачков как слабые источники света на позициях. Раздавливая нескольких таких рачков в руке и смачивая их слюной, они получали свечение, достаточное для чтения карт и донесений, но незаметное для противника. Высушенные рачки применялись также для получения люциферазы и люциферина в очищенном виде.
Кишечнополостные. Многие медузы, такие, как Aequorea, светятся зелеными вспышками. В этом случае стимулятором является ион Ca++, реагирующий с люциферин-люциферазным пероксидным комплексом. Этот комплекс (фотобелок), известный как экворин, может быть выделен и очищен в бескальциевой среде. Экворин используется для анализа изменений внутриклеточной концентрации Ca++, например, при оплодотворении яйцеклетки или сокращении мышечных клеток. Люциферин у Aequorea подобен люциферину у Vargula.
Светляки. Светляки излучают в основном желтый свет. Они живут на многих континентах, и часто их свечение можно наблюдать на больших пространствах полей и лесов в Северной Америке; с ним связаны и эффектные синхронные световые вспышки, известные в Юго-Восточной Азии. Свечение запускается нервным импульсом, однако природа запускающего процесс вещества пока неизвестна; полагают, что им может быть кислород. Люциферин у светляков – бензотиазол. Светоизлучение возникает при распаде циклического пероксида, синтез которого требует АТФ, люциферина и кислорода.
Использование люминесценции животными. Функциональная роль биолюминесценции может быть разной, но в большинстве случаев она связана с такими аспектами поведения, как нападение, защита и коммуникация. Использование для коммуникации свойственно светлякам, у которых видоспецифические вспышки служат сигналами при ухаживании и спаривании. Vargula использует люминесценцию для отвлечения и отпугивания хищника. Подобным образом ведет себя и глубоководный осьминог. Частые короткие вспышки могут, видимо, отпугивать врагов, тогда как длительное и постоянное свечение – привлекать добычу. Глубоководная рыба морской черт имеет для этой последней цели сложное устройство: над его головой, как на рыболовной удочке, подвешен специальный орган, который светится постоянно, покачиваясь перед ртом. Вероятно, самая миниатюрная приманка – это небольшой фотофор, имеющийся во рту рыбы Neosopelus.