Биология как наука
Рефераты >> Биология >> Биология как наука

Строение и функции макромолекул. Важные в биологии от­ношении макромолекулы обычно име­ют полимерную структуру, т. е. состоят из мн. однородных, но не одинаковых мономеров. Так, белки образованы 20 ви­дами аминокислот, нуклеиновые кисло­ты — 4 видами нуклеотидов, полисахариды состоят из моносахаридов. Последо­вательность мономеров в биополимерах наз. их первичной структурой. Установ­ление первичной структуры — началь­ный этап изучения строения макромо­лекул. Уже определена первичная структура множества белков, некоторых видов РНК. Разработка методов определения последовательности нуклеотидов в длин­ных цепях РНК и, особенно, ДНК — важнейшая задача молекулярной биологии. Цепочка биополимеров обычно свёрнута в спираль (вторичная структура); моле­кулы белков ещё и сложены определён­ным образом (третичная структура) и часто соединяются в макромолекулярные комплексы (четвертичная структура). Каким образом первичная структура белка определяет вторичную и третичную структуры, как третичная и четвертичная структуры белков-ферментов опреде­ляют их каталич. активность и спе­цифичность действия — ещё недостаточ­но выяснено.

РЕГУЛЯЦИЯ ФУНКЦИЙ КЛЕТКИ. Характерные черты процессов, проис­ходящих в живой системе,— их взаим­ная согласованность и зависимость от регуляторных механизмов, обеспечиваю­щих поддержание относительно стабильно­сти системы даже при меняющихся ус­ловиях среды. Регуляция внутриклеточ­ных процессов может достигаться изменением набора и Интенсивности синтеза ферментных и структурных белков, влиянием на ферментативную активность, изменением скорости транспорта ве­ществ через оболочку клетки и др. биол. мембраны. Синтез белка зависит от синтеза молекул 'РНК, переносящих информацию с соответствующего гена — участка ДНК. Пока только для бактерий вскрыта одна из схем регуляции усвоения питательных ве­ществ из среды, достигаемая включени­ем и выключением генов, определяющих синтез необходимых ферментов. Моле­кулярный механизм включения генов (в особенности у многоклеточных организ­мов) не выяснен, и это остаётся первооче­редной задачей молекулярной бологии. Скорость синтеза белка может, по-видимому, регулироваться и непосредственно на месте синтеза — на рибосомах. В связи с отсутствием полного представления о регуляции внутрикле­точных процессов над этой проблемой работают многие исследователи.

ИНДИВИДУАЛЬНОЕ РАЗВИТИЕ ОРГАНИЗМА. У организмов, размножающихся половым путём, жизнь каждой новой особи начинается с одной клетки — оплодотворённого яйца, которое многократно делится и образует множест­во клеток; в каждой из них находится ядро с полным набором хромосом, т. е. содержатся гены, ответственные за раз­витие всех признаков и свойств организма. Между тем пути развития клеток различны. Это означает, что в процессе развития каждой клетки в ней работают только те гены, функция которых необходи­ма для развития данной ткани (органа). Выявление механизма «включения» ге­нов в процессе клеточной дифференцировки — одна из основных проблем биологического разви­тия. Уже известны некоторые факторы, оп­ределяющие такое включение (неодно­родность цитоплазмы яйца, влияние одних эмбриональных тканей на др., действие гормонов и т. д.). Синтез белков осуществ­ляется под контролем генов. Но свойства и признаки многоклеточного организма не сводятся к особенностям его белков; они определяются дифференцировки клеток, различающихся по строению и функции, связям их друг с другом, по образованию разных органов и тканей. Важная и до сих пор не решённая про­блема — выяснение механизма дифференцировки на стадии от синтеза белков до появления свойств клеток и их характер­ных перемещений, приводящих к форми­рованию органов.

ИСТОРИЧЕСКОЕ РАЗВИТИЕ ОРГАНИЗМОВ. Более чем за 100 лет, прошедших со времени появления книги Ч. Дарвина «Происхождение видов .», огромная сумма фактов подтвердила принципиальную правильность построен­ного им эволюционного учения. Однако многие важные положения его ещё не разработа­ны. С эволюционно-генетической точки зрения популяция может считаться элементарной единицей эволюционного процесса, а устойчивое изменение её наследств, осо­бенностей — элементарным эволюционным явлением. Такой Подход позволяет выде­лить основной эволюционный факторы (мутацион­ный процесс, изоляция, волны численно­сти, естеств. отбор) и эволюционный материал (мутации). Ещё не ясно, действуют ли только эти факторы на макроэволюционном уровне, т. е. «выше» видообразова­ния, или в возникновении крупных групп организмов (родов, семейств, отрядов и т. д.) участвуют иные, пока неизвестные факторы и механизмы. Возможно, что все макроэволюционные явления сводимы к изменению на внутривидовом уровне. Решение проблемы специфических факторов макроэволюции связано со вскрытием механизмов наблю­даемого иногда как бы направленного развития групп, что, возможно, зави­сит от существования.«запретов», накла­дываемых строением и генетической конститу­цией организма. Так, первоначально не­принципиальное изменение, связанное с приобретением предками хордовых спинной струны — хорды, впоследствии определило разные пути развития круп­ных ветвей животного мира: 1) возникновение внутреннего скелета и центра­лизованной нервной системы, развитие головного мозга с преобладанием услов­ных рефлексов над безусловными у позвоночных; 2) возникновение наружного скелета и развитие нервной системы ино­го типа с преобладанием чрезвычайно сложных, безусловно-рефлекторных, реак­ций у беспозвоночных.

ПРОИСХОЖДЕНИЕ ЖИЗНИ. Одна из методологически важных проблем биологии, которую не снимает ни маловероят­ное предположение о занесении жизни на Землю из других миров: ни теории о постоянном возникновении жизни на нашей планете

во все периоды её истории. Научный подход здесь состоит в том, чтобы выяснить, в каких условиях зарождалась жизнь на Земле (это произошло несколько млрд. лет назад), и попытаться моделировать процессы, которые при этом могли происходить, реконструируя экс­периментально последовательные этапы возникновения жизни. Так, на основании данных о физическом и химическом состоянии атмосфе­ры и поверхности Земли в ту эпоху по­лучены теоретические и экспериментальные доказательства возможности синтеза простейших углеводородов и более сложных органических соединений — аминокислот и мононуклеотидов, что подтверждает принципиальную вероятность их полимеризации

выделяя их из разрушенных (гомогенизи­рованных) клеток осаждением в центри­фугах с различными скоростями враще­ния. Свойства клеток исследуют также в условиях длительного культивирования их вне организма', пользуясь микроманипуляторами и методами микрургии, производят обмен ядрами между клетками, слияние (гибри­дизацию) клеток и т. д.

БИОСФЕРА И ЧЕЛОВЕЧЕСТВО. Быстрый рост населения земного

шара ставит вопрос о границах биологической производительности биосферы Земли. Через 100—200 лет при сохранении современных способов ведения земного хозяйства и тех же темпов роста численности человечества почти половине людей не хватило бы не только пищи и воды, но, и кислорода для дыхания. Вот почему в короткий срок, за время жизни 2—3 поколений людей признаётся необходимым, во-первых, ор­ганизовать строгую охрану, природы и ограничивать в разумных пределах мн. промыслы, и прежде всего истребление лесов; во-вторых, приступить к обшир­ным мероприятиям, направленным на , резкое повышение биологической производитель­ности земной биосферы и интенсифика­цию биологических круговоротов как в природ­ных, так и в культурных биогеоценозах. Нормально функционирующая биосфера Земли не только снабжает человечество пищей и ценнейшим органическим сырьём, но и поддерживает в равновесном состоя­нии газовый состав атмосферы, растворы природных вод и круговорот воды на Земле. Т. о., количественный и качест­венный ущерб, наносимый человеком ра­боте биосферы, не только снижает про­дукцию органического вещества на Земле, но и нарушает химическое равновесие в атмосфере и природных водах. При осознании людь­ми масштабов опасности и разумном отношении к среде своего обитания — био­сфере Земли — будущее выглядит иначе. Научная и промышленная мощь людей уже доста­точно велика для того, чтобы не только разрушать биосферу, но и производить мелиоративные, гидротехнические и иные работы любого масштаба. Первичная биол. продуктивность Земли связана с использованием солнечной энергии, пог­лощаемой в ходе фотосинтеза, и энергией, получаемой посредством хемосинтеза пер­вичными продуцентами. Если человече­ство перейдёт к повышению средней плотности зелёного покрова Земли (для чего имеются, технические возможности), то этим путём на энергетическом входе в биосфе­ру биол, производительность Земли мо­жет быть резко, в 2—3 раза, повышена. Этого можно достичь, если в процессе мелиорации и увеличения плотности зелёного покрова повысить участие, в нём видов зелёных растений с высоким «коэффициентом полезного действия» фотосинтеза. Для интродукции полезных видов в сообщества растений совершенно необходимо знание условий поддержания и нарушения биогеоценотических равновесия, иначе возможны биологические катастрофы: хозяйственно опасные «вспышки» числен­ности одних видов, катастрофические сниже­ние численности др. и т. д. Рационализи­руя биогеохимических работу природных и культурных биогеоценозов, поставив на разумную основу охотничьи, зверобойные, рыбные, лесные и другие промыслы, а также введя в культуру из огромного запаса диких видов новые группы микроорга­низмов, растений и животных, можно ещё в 2—3 раза повысить биологическую произво­дительность и полезную человеку биологическую продуктивность биосферы. Огромные возможности открывает и селекция окуль­туренных микроорганизмов и растений. В ближайшем будущем, когда селекцио­неры смогут использовать достижения быстро развивающихся современной молекуляр­ной генетики и феногенетики, успехи этих исследований будут стимулированы раз­витием и использованием «экспериментальной» эволюции культурных растений, основанной на отдалённой гибридизации, создании полиплоидных форм, получе­нии искусств, мутаций и т. п. Агротех­нике также предстоит переход на новые формы, резко повышающие урожай (одно из реальных направлений — переход от монокультур к поликультурам). На­конец, люди ближайшего будущего долж­ны будут научиться улавливать на вы­ходах из биологических круговоротов не мало­ценные, мелкомолекулярные продукты конечной минерализации органических остат­ков, а крупномолекулярное органические вещество (типа сапропелей). Все эти пути и методы увеличения производитель­ности биосферы лежат в пределах реаль­ного для науки и техники предвидимого будущего и наглядно иллюстрируют грандиозные потенциальные возможности развивающегося человеческого общества, с одной стороны, и значение биологических иссле­дований самых разных масштабов и направлений для жизни человечества на Земле — с другой. Все преобразователь­ные мероприятия, которые человек должен проводить в биосфере, невозможны без знания богатства главных форм и их взаимоотношений, что предполагает не­обходимость инвентаризации животных, растений и микроорганизмов в разных районах Земли, ещё далеко не завершён­ной. Во многих крупных группах организмов неизвестен даже качественный состав входящих в группу видов организмов. Развёртывание инвентаризации требует оживления и резкой интенсификации работ по систематике, полевой биологии (ботаника, зоология, микробиология) и биогеографии.


Страница: