Активность Ni и Fe в синтезе наноуглерода при каталитической конверсии метана
микрофотографии углеродных отложений на никель-содержащем катализаторе и катализаторе Ni-Fe/цео-лите. На рис. 2 б видна сложная структура нанотруб-ки. Четко обозначены графеновые слои, которые представляют собой вложенные друг в друга конусы («рыбья кость»). Канал нанотрубки перекрыт несколькими шапочками. На рис. 3 видно, что при совместном присутствии железа и никеля на катализаторе образуются как длинные УНТ, так и много графитовых фрагментов.
Полученные УНТ многослойные, имеют разный диаметр, длину и структуру. Никельсодержащие катализаторы оказались в наших экспериментах более активными. Это согласуется с обсуждаемым в литературе механизмом [8, 9], по которому разная активность железа и никеля обусловлена разными температурными интервалами устойчивости существования карбидных фаз в системах Fe-C и Ni-C. Согласно этой концепции, пиролиз метана как на Fe-, так и на Ni-содержащих катализаторах протекает через ряд стадий: разложение метана до карбида, диффузия карбида до места роста углеродных структур и дальнейший рост УНТ. Надо заметить, что при 450— 650 °С железо в атмосфере метана полностью превращается в цементит (Fe3C), который практически не катализирует разложение углеводородов. При 700 °С происходит разрушение цементита. Выше 700 °С начинается разложение Fe3C до Fe и углерода. В отличие от Fe3C разложение Ni3C начинается уже при 400 °С. При низкой температуре энергия активации распада карбида существенно больше энергии активации его образования. При высоких температурах скорость распада карбида превышает скорость его образования, и фаза карбида не образуется. Отложение углерода на металлах подгруппы железа происходит при повышенных температурах, когда карбиды этих металлов не образуются (для Fe и Ni эти температуры составляют соответственно 750 и 400 °С). Кроме того, энергия активации образования углеродных отложений из метана на железных катализаторах составляет около 200 кДж/моль, по сравнению с 90 кДж/моль на никелевых [10], что также сказывается на сравнительной активности катализаторов.
На катализаторах с одним металлом с повышением температуры выход УНТ проходит через максимум при 700 °С. Катализатор, содержащий никель и железо, показал более высокую активность при 600 и 800 °С по сравнению с катализаторами с одним активным металлом, при этом зависимость выхода углерода от температуры не проходила через максимум. Это может быть связано с тем, что два активных металла взаимодействуют друг с другом с образованием структуры типа интерметаллида, что сопровождается увеличением активности катализатора при 600 °С. Дальнейшее повышение температуры процесса может приводить к разрушению интерметаллической структуры, и активность катализатора снижается.
Таким образом, Ni и Fe могут быть рассмотрены в качестве модели конкурирующих активных металлов в процессах образования УНТ при окислительной и неокислительной конверсии метана. При совместном их присутствии (сплав SUS 304) образование наноуглерода в процессе парциального окисления метана происходит преимущественно за счет каталитической активности железа. Взаимодействие же Ni и Fe при неокислительной конверсии, в отличие от окислительной, приводит к синергическому эффекту — усилению активности по сравнению с катализаторами с одним активным металлом.
Список литературы
1. Арутюнов B.C., Крылов О.В. Окислительные превращения метана. М.: Наука, 1998, 361 с.
3. Пешнев Б.В., Караева А.Р., Французов В.К. Наука и технология углеводородов, научно-технический журнал, 2000, № 4, с. 83.
8. Чесноков В.В., Буянов Р.А. Успехи химии, 2000, т. 69, № 7, с. 675.
10. Раков Э.Г. Успехи химии, 2000, т. 69, с. 41.