Страница
2

Определение капитальных вложений
Рефераты >> Финансы >> Определение капитальных вложений

(5)

Функция f0 (nh-Х1) формально есть максимальный прирост продукции при оптимальном распределении частичной суммы (nh-Х1) в группе, состоящей из "0" предприятий. Естественно, такой группе, в которой нет ни одного предприятия, никаких средств не выделяется поэтому

f0 (nh-Х1) =0 (6)

Отсюда следует, что на первом шаге основное функциональное уравнение имеет следующее решение:

(7)

Это означает, что на первом шаге, когда рассматривается только одно первое предприятие, любая частичная сумма nh выделяется ему целиком, так как ее некому, кроме него, распределять. Таким образом, оптимальное управление на первой шаге

X1* (nh) = nh (8)

Представим найденное решение основного функционального уравнения на первом шаге в виде табл.2.

Таблица 2 - Определение оптимальных управлений и максимальных прирос продукции на первом шаге

Частичная распределяемая сумма

Сумма, выделяемая первому предприятию

Оптимальное управление

Максимальный прирост продукции

0

50

100

150

200

250

300

0

0

           

0

0

50

 

30

         

50

30

100

   

83

       

100

83

150

 

-

 

98

     

150

98

200

       

127

   

200

127

250

         

158

 

250

158

300

           

195

300

195

В табл.2 заполнена числами только главная диагональ. Эти числа берутся из табл.1 исходных данных для первого предприятия. Пустые клетки левее главной диагонали показывают, что на 1-м шаге вся частичная сумма nh целиком отдается первому предприятию, так как на атом шаге других предприятий нет. Пустые клетки справа от главной диагонали показывают, что не может распределяться частичная сумма, большая имеющейся.

ШАГ 1 тривиален, однако важен в том отношении, что позволяет начать процесс рекуррентного вычисления на последующих шагах по основному функциональному уравнению

fm (nh) =max{gm (xm) +fm-1 (nh-xm) }, n=1, 2, …, N;

0<=xm<=nh, m=1, 2, …, M.

ШАГ 2. Распределение частичных сумм между вторым предприятием и группой из "одного первого предприятия". Для второго шага основное функциональное уравнение имеет вид

F2 (nh) =max{g2 (x2) +f1 (nh-x2) },

0<=x2<=nh; 1<=n<=N

Его решение представлено в табл.3

Таблица 3 - Определение оптимальных управлений и максимальных приростов продукции на 2-м шаге.

Частичная распределяемая сумма

Сумма, выделяемая второму предприятию

Оптимальное управление

Максимальный прирост продукции

0

50

100

150

200

250

300

0

0+0

0

           

0

0

50

0+30

30

20+0

20

         

0

30

100

0+83

83

20+30

50

75+0

75

       

0

83

150

0+98

98

20+83

103

75+30

105

100+0

100

     

100

105

200

0+127

127

20+98

118

75+83

158

100+30

130

150+0

150

   

100

158

250

0+158

158

20+127

147

75+98

173

100+83

183

150+30

180

165+0

165

 

150

183

300

0+195

195

20+158

178

75+127

204

100+98

198

150+83

233

165+30

195

200+0

200

200

233


Страница: