Конспект по дискретной математикиРефераты >> Математика >> Конспект по дискретной математики
Пересечение прямой и плоскости
1) если прямые || пл., то множество пересечений – единственная точка;
2) если прямые II пл., то M ¹Æ;
3) если прямые совпадают, то множество пересечений = множество прямой.
Пересечение системы множеств:
4) Разностью 2-х множеств А и В называется множество, состоящее из всех элементов А, не входящих в В.
С = А \ В
|
|
|
|
|
|
|
A = {a,b,d}; B = {b,c,d,h} C = A \ B={a}.
В отличии от предыдущих операций разность: 1) строго двухместна;
2) не коммутативна, т.е. A\B ¹ B\A.
4) дополнение
E – универсальное множество.
-- дополнение
Операции объединения, пересечения и дополнения называются Булевыми.
Основные законы операций над множествами.
Некоторые свойства È, Ç похожи на алгебраические операции, однако многие свойства операций над множествами все же отличаются.
Основные свойства
1) AUB=BUA; AÇB=BÇA– переместительный закон объединения и пересечения.
2) (АUB)UC = AU(BUC); (AÇB)ÇC=AÇ(BÇC) – сочетательный закон.
3) АUÆ=A, AÇÆ=Æ, A \ Æ=A, A \ A=Æ
1,2,3 – есть аналог в алгебре.
3.а) Æ \ A = Æ- нет аналога.
4) Æ; E \ A =; A \ E=Æ; AUA=A; AÇA=A; AUE=E; AÇE=A;
5.а) свойства 1-4 очевидны и не нуждаются в доказательствах.
5) AÇ(BUC)=(AÇB)(AÇC) – есть аналогичный распределительный закон Ç относительно U.
Прямые произведения и функции
Прямым декартовым “х” множеством А и В называется множество всех пар (a;b), таких, что аÎА, bÎB.
С=AхВ, если А=В то С=А2.
Прямыми «х» n множеств A1x,…,xAn называется множество векторов (a1,…an) таких, что a1ÎA1,…, AnÎAn.
Через теорию множеств введем понятие функции.
Подмножество FÎMx x My называется функцией, если для каждого элемента хÎMx найдется yÎМу не более одного.
(x;y)ÎF, y=F(x).
Соответствие между аргументом и функцией можно изобразить с помощью диаграммы Венна:
Определение: Между множествами MX и MY установлено взаимноодназночное соответствие, если каждому хÎMX соответствует 1 элемент yÎMY и обратное справедливо.
Пример: 1) (х,у) в круге